
Detection of Vulnerability Guard Elimination by Compiler Optimization
Based on Binary Code Comparison

Yuka AZUMA Nagisa ISHIURA
School of Science and Technology, Kwansei Gakuin University

2-1 Gakuen, Sanda, Hyogo, 669–1337, Japan

Abstract—It is known that guards against vulnerabilities in C
programs might be eliminated by compiler optimization if they
are not written properly. This paper proposes a method to de-
tect such flaws in software by binary code comparison. Given a
source code, a pair of binary codes are generated, one with stan-
dard optimization and the other with problematic optimization
suppressed. Since simple comparison of the binary codes end up
with an unacceptable amount of false positives, call instructions
in each function are collated to detect discrepancies. In a prelimi-
nary experiment on 7 programs, our method successfully detected
2 instances of guard losses with only one false positive.

I. Introduction

Cyber attacks targeting software vulnerability are critical
threats to our today’s society. To keep software free from such
flaws, collective efforts are being made. Security critical codes
are heavily audited and formal techniques may be applied in
some cases.

However, even if thorough countermeasures are taken in
source code level, there is no guarantee that the security is
kept all the way down to the machine code. It is pointed out
that compiler optimization, even if it is correctly implemented,
can violate security guarantees incorporated in source code [1].
Examples of security violations induced by compiler optimiza-
tion are elimination of codes to delete secret information, elim-
ination of codes to guard vulnerabilities, destruction of code
arrangement against side channel attacks, etc.

In this paper, we focus on guard elimination by compiler
optimization, where carelessly written guards to protect vul-
nerable code sections may be deleted by optimization utilizing
undefined behavior in the C language standard. We propose
a method to detect the loss of guards by comparing a pair of
binary codes, with and without problematic optimization. We
also propose a code comparison method focusing on call in-
structions, which yields fewer false positives. A preliminary
experiment demonstrates that guard extinction is detected by
our method with very few false positives.

II. Elimination of Guards by Compiler Optimization

To protect the memory space from attacks, operations that
may destroy the memory integrity must be guarded. For exam-
ple, in Fig. 1 (a), dynamic memory allocation is attempted in
line 6, for which the value of size must be checked if it is in
the valid range. The code in line 5 is a guard which is intended
to reject the case where overflow occurs on size.

Who wrote this code might expect that the value of size
would rap around on overflow. However, the C language spec-
ification stipulates that signed overflow triggers undefined be-
havior, where any result is valid for the program, including
continuing computation with random values or aborting the
computation. C compilers, such as GCC and LLVM, make

SOF.c
1: #define BASE 1024
2: ...

3: char *alloc buff (int n){
4: int size = BASE + n;
5: if (size < n) error();
6: char* p = malloc(size);
7: ...
8: }

NPD.c

1: typedef struct{
2: int a[A SIZE];
3: int x;

4: } str t;
5: ...

6: int sub(str t p){
7: ...
8: int y = p -> x;
9: if (p==NULL) error();
10: p -> a[k] = z;
11: }
12: ...

(a) Signed overflow (SOF) (b) NULL pointer dereference (NPD)

Fig. 1. Guard elimination by compiler optimization.

full use of the undefined behavior in a source program to gen-
erate a better code. When overflow does not occur in line 4
of the example, the comparison in the guard is always false
and hence the guard is not necessary. When overflow occurs,
any behavior is valid for this program, since it is undefined be-
havior. Taking the both cases in consideration, compilers can
delete the guard in line 5, so that the memory allocation in line
6 will be exposed without protect1.

Fig. 1 (b) shows another example. The guard in line 9 re-
jects accesses to a struct by a NULL pointer. However, in
this code, the guard was accidentally misplaced; it should have
been placed before line 8. When p is not NULL, the condi-
tion of the guard in line 9 is always false, and the guard is
unnecessary. When p is NULL, the dereference of p in line
8 triggers undefined behavior, then any behavior is valid for
this program. Taking both cases into account, compilers may
delete the guard in line 9. Most compilers do not generated the
code to abort program on NULL pointer dereference only; if
the effective is valid, the access may be granted. This led to a
vulnerability in Linux kernel [2].

As a first aid fix to this problem, GCC has implemented
compiler options to suppress problematic optimization. For
example, -fwrapv option generates codes that precisely wrap
round on integer overflow. However, these options are not al-
ways recommended because they slow down the codes sub-
stantially. Moreover, not all the compilers do not support
all the options. GCC also has some options to warn on
code elimination utilizing undefined behavior. For exam-
ple, -Wstrict-overflow option turns on warning when code
elimination utilizing signed overflow is performed. However,
this option does not always work and there is no option for
optimization regarding null pointer dereference. Static code
analysis may detect this kind of flaw, but it may yield many
irrelevant false positives.

1The guard would not be eliminated if the predicate were written as
(INT MAX-BASE<n). Unsigned integers cause no problem because they do
not overflow but wrap round.

SASIMI 2019 ProceedingsR3-13

- 229 -

binary binary’
comparison

source
suppress
problematic
optimization

standard
optimization

Fig. 2. Flow of the proposed method.

...
<main>
callq <fprintf>
callq <memcpy>
callq <__assert_fail>
callq <strcpy>

<sub1>
...

...
<main>
callq <memcpy>
callq <fprintf>
callq <exit>
callq <strcpy>
callq <__assert_fail>

<sub1>
...

binary binary’

Fig. 3. Code comparison focusing on call instructions.

III. Detection of Guard Elimination by Compiler
Optimization

This paper proposes a method to detect guard elimination by
compiler optimization. We assume that a set of source codes
for building a binary executable code is given. Then it is tested
if any guard is lost during compilation.

Fig. 2 illustrates the flow of the proposed method. A pair
of binary codes are generated from given source codes. One
is with standard optimizing options. The other is without
optimization that is known to delete guards. By compar-
ing the binary codes (the assembly codes obtained by dis-
assembling), loss of guards can be detected. For exam-
ple, in the case of GCC, optimization tasks utilizing unde-
fined behavior regarding signed overflow and null pointer
dereference are suppressed by compiler options -fwrapv and
-fno-delete-null-pointer-checks, respectively.

However, these suppressors change resulting codes more
largely than we expect, all over the whole code. This is be-
cause many optimization passes work in combination and de-
pendent on each other. As a result, a simple code differencer
produces an impractical amount of false positives.

To solve this problem, we compare a pair of binaries focus-
ing on subroutine calls. This scheme works because the guards
almost always have calls error handling routines for failed as-
sertions. In our method, call instructions in each subroutine
are collated. Fig. 3 illustrates the procedure. The codes are
dissected into subroutines and then call instructions (callq)
in each function are matched by the operands. Reordering of
the instructions are allowed within the subroutine. If a lonely
call is found, it is reported as a potential guard loss.

IV. Preliminary Experiment

A guard loss detector based on the proposed method is im-
plemented in Perl5. It runs on Linux (Ubuntu 18.04.2).

The result of preliminary experiment is summarized in Ta-
ble I. The compiler used was GCC-7.4.0 and the default
optimizing option was -O2. “SOF” and “NPD” are results
when -fwrapv and -fno-delete-null-pointer-checks
were applied which suppressed optimization regarding signed
overflow and null pointer dereference, respectively. “#diff”
shows the number of reported code differences and “#detect”
the number of actual guard losses which were confirmed by hu-
man inspection. Two guard losses regarding signed overflow

TABLE I
Experimental result.

program
#line SOF NPD

(×1000) #diff #detect #diff #detect
echo 4.9 0 0 0 0
mcc 1.2 1 1 0 0
libpng 4.6 1 0 0 0
zlib 13.4 0 0 0 0
libvorbis 19.2 0 0 0 0
pngquant 0.7 0 0 0 0
pngquant’ 0.7 1 1 0 0

1:...
2:if (x->type == token STAR) {
3: int count = 0;
4: while (x -> type == token STAR) {
5: count ++;
6: ...
7: }
8: if (count == 1) { ... }
9: else if (count > 1) { ... }
10: else { assert (0); }
11: ...

Fig. 4. Code fragment of mcc.

were detected with only one false positives.

Fig. 4 shows a code fragment of mcc. It was found that
assert statement in line 10 was optimized away. Note that no
warning was issued even with -Wstrict-overflow option,
so that the programmer had had no chance to know the guard
loss. The difference reported on “libpng” was a false positive.
This was due to the fact that -fwrapv option somehow sup-
pressed function inlining of a certain function which made the
number of call instructions different. Program “quant’“ was
a clone of “quant” but one of the guards was intentionally
rewritten so that the predicate was dependent on wrap round
on signed overflow. The loss of guard from this code flaw was
successfully detected.

Our method just detects that guards are eliminated, which
do not directly lead to vulnerabilities. However, we consider it
still important to detect and remove potential vulnerabilities.

V. Conclusion

This paper has proposed a method of detecting guard elim-
ination by compiler optimization. Loss of guards have been
successfully detected in a preliminary experiment.

Currently, localization and confirmation of guard losses are
done by manual inspection, which should be automated to
some extent. Moreover, experiments on much more programs
should be done. We will be working on these issues.

Acknowledgments—Authors would like to express their appreciation
to the members of Ishiura Lab. of Kwansei Gakuin Univ. for their
cooperation.

References

[1] Vijay D’Silva, et al.: “The Correctness-Security Gap in
Compiler Optimization,” in Proc. IEEE Security and Pri-
vacy Workshops, pp. 73–87 (May 2015).

[2] Cve-2009-1897, http://cve.mitre.org/cgi-bin/
cvename.cgi?name=CVE-2009-1897 (June 2009).

[3] “Bug 30475: assert(int+100>int) optimized away,”
https://gcc.gnu.org/bugzilla/show_bug.cgi?
id=30475 (Jan. 2007).

- 230 -

