
Binary Synthesis from RISC-V Executables

Shoki HAMANA Nagisa ISHIURA
School of Science and Technology, Kwansei Gakuin University

2-1 Gakuen, Sanda, Hyogo, 669–1337, Japan

Abstract—This paper presents an implementation of a binary
synthesizer which converts a given executable binary code of
RISC-V into hardware functionally equivalent to a RISC-V core
executing the code. A CPU core and an instruction memory are
replaced by the synthesized hardware, which reduces execution
time and hardware size for small scale programs. A given binary
code is disassembled and parsed to build a control dataflow graph
(CDFG), then traditional high-level synthesis techniques are ap-
plied to generate RT level Verilog HDL. For a small example pro-
gram consisting of 34 through 160 instructions, synthesized hard-
ware on Xilinx FPGA Artix-7 took about 74.5% less cycles than
on RISC-V Rocket core, with smaller number of LUTs.

I. Introduction

RISC-V [1] is an open-source instruction set architecture.
Publicly available RTL source codes and tool chains includ-
ing compilers, simulators, debuggers, are making it easy to de-
velop hardware and software for embedded systems.

Though the most popular usage of RISC-V cores may be
as host processors for high-performance custom hardware en-
gines, they may also be used as main processors for low cost
IoT devices. Since RISC-V is originally not intended for high
performance processors, instruction extensions or hardware
support become options, when a RISC-V core needs more ef-
ficiency in computation speed or in power consumption. If the
bottleneck is reduced to some core operations, customized in-
structions will be effective. Otherwise, migration of the loads
from software to hardware should be considered.

High-level synthesis [2] or binary synthesis [3, 4, 5] is one
of the most prevailing techniques for this purpose, where a pro-
gram code written in high-level languages or an executable bi-
nary code are automatically compiled into a register transfer
level hardware model.

Although the performance of the hardware generated by bi-
nary synthesis is generally lower than those by high-level syn-
thesis, due to lack of high-level information in the input pro-
grams, binary synthesis can handle wider range of software
codes. The input programs may contain inline assembly or in-
terrupt handlers in hand written assembly.

This paper presents binary synthesizer that translates a
RISC-V binary code into logic synthesizable Verilog HDL de-
scription. A whole binary code is synthesized into a hardware
module functionally equivalent to the RISC-V core executing
the code. It aims at replacing the CPU core and the instruction
memory by the hardware and reducing the execution cycles
and hardware cost for small scale programs.

II. Binary Synthesis

Binary synthesis differs from high-level synthesis in the
front-end part; a CDFG (control dataflow graph) is constructed
from a binary code instead of a program written in a high-level

RISC-V

IM DM

HW

DM

bin
prog

Fig. 1. Binary synthesis of CPU compatible hardware.

language. Almost all of the back-end techniques are common
with high-level synthesis.

The merit of binary synthesis is that it has less restrictions on
input behavior specifications. For example, C programs with
pointers or complicated control structures can be synthesized
into hardware. Binary synthesis can handle programs in hand-
written assembly programs or those containing inline assembly
codes intended to communicate with hardware. it can even deal
with programs containing interrupt handlers [6].

Mittal et al. [3] developed a binary synthesizer to translate
DSP binaries into FPGA hardware. It accepted programs in
C/C++, Matlab, and Simulink as well as hand-written assem-
bly. The binary synthesizer developed by Stitt et al. [4] syn-
thesized selected sections of binary codes of MIPS, ARM,
and MicroBlaze into coprocessors, or hardware accelerators.
ACAP [5] converted MIPS binary codes into hardware. It al-
lows either generation of coprocessors from code sections or
compilation of a whole binary code into a hardware module
that replaces the CPU and the instruction memory.

However, to the best of our knowledge, there is no binary
synthesizer that takes RISC-V binaries.

III. Binary Synthesis from RISC-V Executables

The input to our binary synthesizer is a binary executable
code for RISC-V. As for the instruction set, we assume
RV32IM, base integer instruction set with standard extension
for integer multiplication and division. Then, as shown in Fig.
1, a hardware module which is compatible with the CPU exe-
cuting the binary program is synthesized. The elimination of
the instruction memory might be useful in protecting the soft-
ware from analysis.

Fig. 2 shows the flow of synthesis in our method. Input pro-
grams may be written in C language or in assembly language.
Inline assembly is also allowed. They are compiled (by gcc) or
assembled (by gas) and then linked to a executable binary code
(by ld). The front-end of our binary synthesizer scans the dis-
assembled code to generate a CDFG (control dataflow graph),
a popular data structure for high-level synthesis. The back-
end of the synthesizer takes the CDFG to perform a standard
sequence of high-level synthesis tasks to generate a hardware
model in Verilog HDL.

Fig. 3 (a) shows how DFG is generated from a RISC-V in-

SASIMI 2019 ProceedingsR3-12

- 227 -

L

+

<

-32756

...
lw a1,-32756(gp)
add a0,a1,a0
sll a0,a0,0x2
sw a0,-32760(gp)
bne a1,a2,0x8000
...

CDFG

objdump

RISC-V binary

gcc

C

Verilog
HDL

gas

asm

front-end

CDFG generator

back-end

8

v3

v3

v3

+
*

+

ld
dataflow analysis

simplification

scheduling

binding

library info

RTL IR

composer

Fig. 2. Flow of binary synthesis.

1: lw a3,4(a2)
2: lw a4,8(a2)
3: mul a4,a3,a4
4: addi a5,zero,115
5: mul a5,a3,a5
6: add a3,a4,a5

 ...
80000034: addi a5,a0,5
80000038: addi a5,a5,5
8000003c: div a4,a4,a5
80000040: mul a3,a5,a2
80000044: blt a4,a3,0x80000038
80000048: addi a4,a4,1
 ...

(a) DFG generation

+

L

+

L

4 8

* *

115

+
+

5

/ *

<
c
c c

+
1

+
5

(b) CDFG construction

Fig. 3. CDFG generation.

struction sequence. A load instruction (such as lw in line 1)
is converted into an add operation to calculate its effective ad-
dress and a load operation. An arithmetic instruction such as
mul (multiplication) in line 3 is translated into a corresponding
operation node. When the value in a register is updated, a new
value node is generated. The value node is later assigned to a
hardware register in the binding phase. An operation to load
a constant into a register (such as addi in line 4) reduced to a
constant value node.

Fig. 3 (b) illustrates how CDFG is constructed. An instruc-
tion sequence is dissected at branch instructions and branch
targets to yield a set of basic blocks. Since there is no delayed
branch in RISC-V, this dissection is straightforward. Each ba-
sic block becomes a DFG (dataflow graph). A conditional
branch instruction is translated into an operation to compute
the branch condition and transition edges to the next DFGs.

One hard issue in binary synthesis is how to handle regis-
ter jump instructions (such as jr) whose target addresses are
determined only at run time. We adopt the same strategy as
ACAP [5]. A module named “PC2state” is generated which
translates the instruction addresses to the corresponding state
encodings of the synthesized hardware. A register jump in-
struction, which writes its target address into PC (program
counter), is converted into an operation to update the state reg-
ister by the output of the PC2state module. The PC2state mod-
ule is generated by gathering the head states of all the DFGs.

IV. Preliminary Experiment

A binary synthesizer “ACAP-R” has been implemented
based on the method described in the previous section. The
front-end for RISC-V has been newly developed and the back-
end of ACAP is used as it is.

Table I summarizes the result of an experiment where small
C programs were synthesized targeting an FPGA. “#insn”

TABLE I
Experimental result

RISC-V ACAP-R
program #insn #cycle #LUT delay A,M #cycle #LUT delay

[ns] [ns]
fibonacci 34 1,483 3,0 274 1,533 7.2
arith-test 70 642 3,202 14.7 2,1 273 2,665 11.6
FSM 160 777 2,2 164 2,362 13.3

Synthesizer: Xilinx Vivado (2017.4)
Target: Xilinx Artix-7 (XC7Z020-1CLG400I)

indicates the instruction counts in the programs. “#cycle”,
“#LUT”, “delay” show the execution cycle counts, the LUT
counts, and the critical path delays, respectively. The target
FPGA was Xilinx Artix-7 (XC7Z020-1CLG400I). “A,M” in-
dicates the numbers of ALUs and multipliers allocated for syn-
thesis. The RISC-V core used in the experiment is generated
by the Rocket Chip Generator1 with the DefaultRV32Config
mode. The hardware generated by ACAP-R took 74.5% less
cycles on average. The LUT counts of the hardware are sup-
posed to grow in proportional to the instruction counts, but
were smaller than the core when the programs were of less
than 160 instructions.

V. Conclusion

A binary synthesizer ACAP-R which generates hardware
from a RISC-V binary code has been presented.

The original version of ACAP has another synthesis mode
that compiles specified code segments into coprocessors which
is tightly coupled with the CPU core. Our future work includes
extending ACAP-R to operate in this mode.

Acknowledgments—Authors would like to express their appreciation
to Dr. H. Kanbara (ASTEM/RI), Prof. H. Tomiyama (Ritsumeikan
Univ.), and Mr. T. Nakatani (formerly with Ritsumeikan Univ.) for
their valuable comments. We would also like to thank to the members
of Ishiura Lab. of Kwansei Gakuin Univ. for their cooperation.

References

[1] D. Patterson and A. Waterman: The RISC-V Reader: An
Open Architecture Atlas, Strawberry Canyon (Nov. 2017).

[2] D. D. Gajski, N. D. Dutt, A. C-H Wu, and S. Y-L Lin:
High-Level Synthesis: Introduction to Chip and System
Design, Kluwer Academic Publishers (1992).

[3] G. Mittal, D. C. Zaretsky, X. Tang, and P. Banerjee: “Au-
tomatic translation of software binaries onto FPGAs,” in
Proc. DAC 2004, pp. 389–394 (June 2004).

[4] G. Stitt and F. Vahid: “Binary synthesis,” ACM TODAES,
vol. 12, no. 3, article 34 (Aug. 2007).

[5] N. Ishiura, H. Kanbara, and H. Tomiyama: “ACAP: Binary
synthesizer based on MIPS object codes,” in Proc. ITC-
CSCC 2014, pp. 725–728 (July 2014).

[6] N. Ito, Y. Oosako, N. Ishiura, H. Tomiyama, and H.
Kanbara: “Binary synthesis implementing external inter-
rupt handler as independent module,” in Proc. RSP 2017,
pp. 92–98 (Oct. 2017).

1https://github.com/freechipsproject/rocket-chip (accessed
2019-06-10).

- 228 -

