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ABSTRACT

This paper proposes an automated test method for detecting per-

formance bugs in compilers. It is based on di�erential random test-

ing, in which randomly generated programs are compiled by two

di�erent compilers and resulting pairs of assembly codes are com-

pared. Our method attempts to achieve e�cient and accurate de-

tection of performance di�erence, by combining dynamicmeasure-

ment of execution time with static assembly-level comparison and

test program minimization. In the �rst step, discrepant pairs of

code sections in the assembly codes are extracted, and then the

sums of the weights of discrepant instructions in the sections are

computed. If signi�cant di�erences are detected, the test program

is reduced to a small program that still exhibits the static di�erence

and then the actual execution time of the codes are compared. A

test system has been implemented on top of the random test sys-

tem Orange4, which has successfully detected a regression in the

optimizer of a development version of GCC-8.0.0 (latest as of May,

2017).
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1 INTRODUCTION

Since extremely high reliability is required for compilers, which

are infrastructure tools for developing every kind of software, it

is imperative that they should be tested thoroughly. Furthermore,

compilers are also expected to generate superior codes in terms
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of execution speed, memory usage, power consumption, etc., and

thus it is also important to test compilers to con�rm if intended

optimization is properly performed.

Validation of compilers is usually done using test suites, large

sets of test programs. Test suites and benchmarks are also used to

assess optimization performance of compilers. In either case, there

should be bugs or unexpected performance degradation (or perfor-

mance bugs) that can not be detected by the test suites, as long as

they are �nite.

Automated random test is one of the e�ective measures to rein-

force validation or performance assessment of compilers by test

suites. It tests compilers with randomly generated programs as

long as time allows. Many random test generators [7–9, 11, 12, 14,

15] have been developed even for C compilers, and there have been

some attempts to detect performance bugs using these random test

generators.

Iwatsuji [6] and Barany [1] proposed di�erential random test-

ing of compiler optimizers where generated programs are com-

piled with di�erent compilers (or di�erent versions of the same

compiler) and generated codes are compared. Another way of per-

formance testing is to (automatically) optimize generated program

in the source code level (or in the AST level) and compare the codes

generated from original and optimized programs [5]. In either ap-

proach, generated codes are statically compared. This may lead to

cases where a detected code di�erence does not mean the actual

performance di�erence.

To address this issue, we propose in this paper a random test

method to detect compilers’ performance bugs based on mixed

static and dynamic code comparison. It is also based on the di�er-

ential random testing. In a static comparison step, it tries to detect

a code di�erence and then minimizes (or reduces) the source pro-

gram to isolate the code di�erence. Then in a dynamic comparison

step, it measures the run time of the codes to verify if there is the

actual performance di�erence.

An automated test system for C compiler based on the proposed

method has been developed in Perl5 on top of Orange4 [12]. It

successfully detected regression in the optimizer of GCC-8.0.0 (the

latest version at the time of experiment) and reported it to the de-

veloper. We also show that the proposed method may be used for

performance assessment of C compilers such as GCC and LLVM.

2 RELATED WORK

Figure 1 is an example of performance regression on GCC pre-

sented in [6]. From the C program (test.c), GCC-6.0.0 (a develop-

ment version at the point of the report) generated a longer code

than the previous version. In this paper we call such a case a perfor-

mance bug where a compiler under test fails to perform expected
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test.c

1: unsigned int x = 1;
2: int main (void) {
3: long long int a = -2LL;
4: int t = 1 <= (a/x);
5: if (t != 1) { __builtin_abort(); }
6: return 0;
7: }

gcc5.s (GCC-5.2.1 -O3) gcc6.s (GCC-6.0.0 -O3)

main:
xorl %eax, %eax

ret

main:
movl x(%rip), %ecx
movq $-2, %rax
cqto
idivq %rcx
testq %rax, %rax
jg .L7
xorl %eax, %eax
ret
.L7
pushq %rax
call abort

Reported in https://gcc.gnu.org/bugzilla/show_bug.cgi?id=68431.

Figure 1: Example of performance regression [6]

optimization. Although the performance of compilers may refer to

many aspects of generated codes, we focus on speed performance

in this paper, as in most of the existing studies. Unlike the valida-

tion test where generated codes are clearly decided as correct or

not according to the language standard, the boundary for the per-

formance bugs is often ambiguous; it is hard to conclude that 10%

speed-down on a particular source code is a bug. The �nal decision

is left to the compiler writers in the end, but we can help them by

�nding test cases that present substantial speed-down or obvious

missing of expected code transformation.

NULLSTONE [3] is a test suite to evaluate optimization perfor-

mance of C compilers. It consists of about 6,500 tests targeting

about 40 optimization passes. However, as long as the number of

test programs are �nite, its detection capability will be limited.

Randprog [4] attempts to test C compiler’s miss-optimization.

By randomly generated C programs, it checks if compilers do not

erase codes accessing volatile variables by mistake. However, this

method does not test whether performance improvement by opti-

mization is performed as intended.

Hashimoto [5] proposed a random test based method to detect

missed arithmetic optimization of C compilers. In this method, as

shown in Figure 2 (a), a test program (org.c) is randomly generated,

to which arithmetic optimization is performed in the AST (abstract

syntax tree) level to get a reference program (opt.c). By comparing

the assembly codes (org.s and opt.s) generated by a compiler under

test, it is checked whether the expected optimization is performed.

Iwatsuji [6] proposed another random test method based on as-

sembly code comparison. As shown in Figure 2 (b), a random pro-

gram (test.c) is compiledwith two di�erent compilers and resulting

two assembly codes (test1.s and test2.s) are compared. Regression

may be detected if di�erent versions of the same compiler are used.

While the two methods above depend on relatively simple mea-

sures for comparing assembly codes, such as the number of instruc-

tions, Barany [1] proposed muchmore sophisticated way of detect-

ing the di�erence of two assembly codes, laying emphasis on the

amounts of spill code considering loops.

Since all the three methods are based on static analysis, there

are cases where detected di�erences do not mean actual perfor-

mance di�erences. Monseley [10] proposed a method for compar-

ing the performance of di�erent versions of the same compiler by

(a) Method in [5] (b) Method in [6]

Figure 2: Random test of compilers’ performance

comparing their execution traces. It seems to take relatively long

time to acquire and analyze the traces for large scale programs.

Chen [2] directly compares the execution cycles of the codes gen-

erated by di�erent compilers from relatively restricted programs.

The both methods uses benchmark programs but not randomly

generate programs.

3 RANDOM PROGRAM GENERATION AND

ERROR PROGRAM MINIMIZATION

As a tool to generate random test programs, Csmith [15] was em-

ployed in Barany’s method [1]. Csmith is a powerful C program

generator that covers broad range of the C syntax. In this method,

C-Reduce [13] is also used as a minimization tool for the error pro-

grams. C-Reduce is a general purpose error program minimizer

that takes a C program and a command line to judge OK/NG of

the program and outputs a program as small as possible that fails

the check.

Iwatsuji’s and Hashimoto’s methods [5, 6] used Orange3 [11]

as a random program generator. It also generates C programs but

di�erent from Csmith in a few ways. Orange3 knows the runtime

values of all the variables, expressions, and subexpressions in the

program at program generation time, so it can generate long and

complex arithmetic expressions without unde�ned behavior such

as zero division and signed over�ow. On the other hand, it can gen-

erate a sequence of assign statements but not other control state-

ments, so Orange3 is suitable for testing arithmetic optimization

of C compilers. Orange3 has a built-in error program minimizer,

which can process only the programs generated by Orange3 but is

much faster than C-Reduce.

Orange4 [12], which is used in this paper, is a successor to Or-

ange3. It employs a di�erent generation algorithm from Orange3’s

but can generate complex arithmetic expressions without unde-

�ned behavior. It can also generate if-statements and for-loops.

Figure 3 is an example of a test program generated by Orange4.

In the main part (lines 26–35) are a for-loop, an if-statement, and

assign statements. Since the runtime values of all the variables are

known at program generation time, the results are compared with

the correct values as in lines 37–39. Orange4 is also equipped with

built-in minimizer which runs as fast as that of Orange3.

In Csmith as well as Orange3 and Orange4, the size of the ran-

dom programs is speci�ed in a con�guration �le or in a command
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1: #include <stdio.h>
2: #define OK()
3: #define NG(fmt,val) __builtin_abort()
4:
5: const volatile signed int x9 = -59;
6: signed long long x10 = 8198LL;
7: signed short x11 = 18332;
8:
9: int main (void)
10: {
11: static unsigned long long x0 = 7LLU;
12: static const volatile signed long x1 = 0L;
13: signed char x2 = 22;
14: unsigned long x3 = 0LU;
15: static unsigned char x4 = 29U;
16: static const signed char x5 = -1;
17: static signed int x6 = 123621;
18: signed int x7 = -7293637;
19: unsigned long long t0 = 46LLU;
20: signed long t1 = 297271L;
21: unsigned long x8 = 102005473280LU;
22: signed long long t2 = 0LL;
23: signed char t3 = 3;
24: signed int i;
25:
26: for( i = x9*x6; i < x5+x5; i -= x7+x3 ) {
27: t0 = x3|x0*x2-x4;
28: t1 = x5*x5-x6+x2/x7;
29: if( x1<<x1 ) {
30: t2 = x8>>x4/t0+x10*x10+x11;
31: }
32: else {
33: t3 = x14|x16;
34: }
35: }
36:
37: if (t0 == 120) { OK(); } else { NG("%d", t6); }
38: if (t1 == 220) { OK(); } else { NG("%d", t6); }
39: if (t3 == 22) { OK(); } else { NG("%d", t6); }
40: return 0;
41: }

Figure 3: Example of a test program generated by Orange4

Figure 4: Minimization of error program

line. It is adjusted according to the maturity of the compiler un-

der test, but it usually ranges from several hundred lines to sev-

eral thousand lines. Test programs should not be too long because

compilers suddenly slow down when the program size exceeds a

certain threshold. Otherwise, the longer program is the better, be-

cause the combinations or relations among variables, operations,

and branches increases exponentially with the size of the program.

Minimization of error programs is as important task as program

generation, because it is impossible to debug the compiler under

test with an error program consisting of thousands of lines. Fig-

ure 4 shows a general �ow of error program minimization. Start-

ing from a program that has detected some error (1), one of the

transformations to reduce the size of the program is applied. The

transformations includes replacing a subexpression by a constant,

deletion of a statement, etc. If a transformation eliminates the er-

ror (2), then it is canceled. A transformation is also canceled if it

triggers unde�ned behavior, which may happen in C-reduce but

not in Orange3 nor Orange4. By accepting only error preserving

transformations, a program (7) is reached on which any possible

transformation erase the error. This is the output of the error pro-

gram minimization. It is not minimum in a strict sense, but called

so because it can not be reduced by any single transformation.

4 MIXED STATIC AND DYNAMIC CODE

COMPARISON

4.1 Outline

Like the methods of Iwatsuji’s and Barany’s, we compare a pair

of codes generated by di�erent compilers or di�erent versions of

compilers from each randomly generated program.

One shortcoming of static code comparison approach is that we

do not tell whether there is really performance di�erence even if

signi�cant di�erences are detected. However, simple comparison

of execution time does not work. We must use long test programs

in performance test as well as in validation test to increase detec-

tion capability. For such long test programs, even if performance

di�erences existed, almost no di�erence would be observed as a

hole. There are even cases that performance losses and gains may

cancel each other.

To address this issue, we propose a comparison method consist-

ing of two stages. In the �rst stage, we statically compare assembly

codes. If we �nd a signi�cant di�erence, we minimize the test pro-

gram to isolate the di�erence. Then, in the second stage, we run

the two codes generated from the minimized program to measure

their actual execution time.

By this method, C programs that reveal real performance di�er-

ences will be obtained. Since minimization in the �rst stage elimi-

nates parts of the test programs that results in the same instruction

sequences for the both compilers, the percentage of the di�erent

instruction sequences will be much increased so that it becomes

easier to detect the di�erence in execution time.

4.2 Static Comparison of Assembly Codes

In the static comparison of the �rst stage, we only compare pairs of

sections in which the codes disagree, ignoring the sections where

codes are the same. The comparison consists of two steps.

(1) Identifying sections where the assembly codes di�er.

(2) Comparing the sums of the weights of mismatched instruc-

tions in each section pair to decide if it potentially causes

performance di�erence.

Figure 5 illustrates how the �rst step is performed. Two assem-

bly codes test1.s and test2.s are being compared. By using a text

level di�erencer on the assembly codes, the pair of code sections

where more than k instructions (k is about 7) are exactly the same

are eliminated. This leaves pairs ofmismatched code sections (S1, S
′
1),

(S2, S
′
2), and (S3, S

′
3). The pairs are further investigated in the sec-

ond step. If either one of them has a meaningful di�erence, then

test1.s and test2.s are judged to be di�erent.

In the second step, mismatched instructions in each pair of mis-

matched sections are identi�ed and the di�erence is evaluated based
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Figure 5: Extraction of mismatched section pairs in assem-

bly codes

Figure 6: Mismatch instructions and their weighted sums

on the weighted sums of mismatched instructions. For example, in

Figure 6, a pair of sections S1 and S
′
1 is being compared. At �rst, in-

struction pairs of the same opcodes are identi�ed, as indicated by

the red lines. Then the other instructions are mismatched instruc-

tions. For each of S1 and S
′
1, the weighted sum of the mismatched

instructions are computed. Since it is hard to de�ne theoretically

valid performance costs to the instructions, the weights are empiri-

cally determined; large weights are give to multiplication, division,

and jump instructions. If the ratio of the sums exceeds a predeter-

mined threshold, which is also empirically decided, then S1 and S
′
1

is judged to have a signi�cant di�erence.

(1)After minimization (2)For measurement of execution time

#include <stdio.h>

int main (void){
...
return 0;
}

1: #include <stdio.h>
2: int main0()

__attribute__((noinline));
3: int main (void)
4: {
5: long i;
6: for(i=0;i<10000000L;i++)
7: {
8: int rc = main0();
9: }

10: return 0;
11: }
12: int main0(){
13: ...
14: return 0;
15: }

Figure 7: Conversion for execution time measurement

4.3 Dynamic Codes Comparison Based on

Execution Time Measurement

The di�erence in the weighted sums in the static comparison does

not necessarily mean the di�erence in execution time on actual

machines. Longer codes are often faster because of various opti-

mization such as loop unfolding, and function inlining.

In the method of this paper, we make �nal decision by measur-

ing the execution time on actual machines.

There are several ways to measure execution time on a real ma-

chine, out of which we adopt a simple one that uses the UNIX time

command. Since the execution time of the minimized program be-

comes very small, the code is looped within the test program. An

example of code conversion on the test program is shown in Figure

7. (1) is an original (minimized) test program from the �rst stage,

and (2) is an augmented program for measurement. Function main

in (1) is renamed to main0 in (2) and called from new main in (2).

In order to prevent inline expansion of main0 (and subsequent op-

timization), a directive to forcibly suppress inline expansion is in-

serted in the second line.

5 EXPERIMENTAL RESULTS

A random test system based on the method proposed in this paper

has been implemented on top of Orange4. It is written in Perl5

and runs on Ubuntu 16.04 LTS environment. Currently, the static

assembly comparator assumes the GAS format and only supports

the x86 architecture.

Performance tests of the optimizers of GCC-8.0.0 against GCC-

7.2.0, and LLVM-4.0 against LLVM-3.8 were conducted. For all the

compilers, the target was x86_64 and the option tested was -O3.

The execution time was measured on Core i5-6200U 2.30GHz×4

with 7.6 GB RAM. The average number of operations per a test

program was set to 400. The version of Orange4 described in [12]

was used in this experiment, which generated programs with only

scalar variables, assign statementswith arithmetic expressions, and

if and for statements. The thresholds for assembly code compar-

ison and execution time comparison was set to 60% and 50%, re-

spectively.

The results are summarized in Table 1. In both tables (a) and

(b), “#test” lists the number of test programs, “#di� 〈assembly〉”

the number of the programs which lead to signi�cant di�erence

in assembly codes, and “#di� 〈time〉” the number of the programs

which detected that the compiler of the newer version generated

slow codes. For reference, we ran the same test also on Intel Xeon
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Table 1: Results of regression tests

(a) GCC-8.0.0 against GCC-7.2.0 (x86_64, -O3)

time

[h]
#test #di�

〈assembly〉
#di�
〈time〉

Proposed 12 15,348 425 308

Iwatsuji [6] 12 16,049 18 (11)

(b) LLVM-4.0.0 against LLVM-3.8.0 (x86_64, -O3)

time

[h]
#test #di�

〈assembly〉
#di�
〈time〉

Proposed 12 11,217 23 11

Iwatsuji [6] 12 14,503 0 (0)

Core i5-6200U 2.30GHz×4, RAM 7.6GB, Ubuntu 16.04LTS
Target: x86_64, Option: -O3
Average ops per test: 400
Thres. for assembly comparison: 60%, Thres. for runtime comparison: 50%

E3–1276 v3 2.30GHz×4 with 15.6GiB RAM, but the results were

exactly the same.

In table (a), we can see that the method proposed in this pa-

per detected 425 di�erences by assembly code comparison, out of

which 308 were con�rmed to be regression errors by execution.

Namely, assembly codes generated by GCC-8.0.0 were longer than

those generated by GCC-7.2.0 for the 425 test programs out of

15,348, and actually slower for the 308 programs. Namely, there

were 117 false positives, which accounts for 27.5% of 425 errors. For

comparison, the previous (Iwatsuji’s) method [6] detected only 18

assembly code di�erences1. All the 18 cases were included in the

425 cases detected by the proposed method. This means that the

proposed method detected regression errors missed by the previ-

ous method. For reference, “(11)” is the result of dynamic compari-

son on the 18 cases. There were also false positives (38.9%) in Iwat-

suji’s method. In table (b), we can see that the proposed method

succeeded in detecting 11 regression errors in LLVM-4.0.0, which

the previous method failed to �nd.

Figure 8 is an example of the test programs that detected per-

formance degradation in the latest version of GCC-8.0.0 as of May

2017 (against GCC-7.0.1). This regression was reported to the de-

velopment team through GCC’s Bugzilla 2 and was �xed.

Table 2 shows the result of performance comparison among six

versions of LLVM by the proposed method. Every pair of the ver-

sions was tested with 1,000 random test programs. Each column

lists the number of test programs for which the version generated

slower codes than the other versions. For example, “6” in the 3.8’s

column and the 3.6’s row tells that LLVM-3.8 generated slower

codes than LLVM-3.6 for 6 test programs, while “77” in the lower

left cell tells that LLVM-3.8 generated faster code than LLVM-3.6

for 77 test programs. Looking at the bottom row for LLVM-7.0, the

numbers (191, 187, 41, · · · ) are decreasing as the version number

increases, which indicates that performance has been improved

on each version-up. Note that this also means that the proposed

method of performance comparison has a certain accuracy. It is

1 Iwatsuji’s method originally used Orange3 as a random program generator, but we
used Orange4 in this experiment. Thus, the proposed and Iwatsuji’s methods are com-
pared with exactly the same sequence of random programs.
2https://gcc.gnu.org/bugzilla/show_bug.cgi?id=81165

1: void func() __attribute__((noinline));

2:

3: short x0 = 15;

4:

5: int main (void)

6: {

7: long i;

8: for( i = 0; i < 100000000L; i++){

9: func();

10: }

11: return 0;

12: }

13: void func(){

14: volatile int x1 = 1U;

15: volatile char x2 = 0;

16: char t0 = 0;

17: unsigned long t1 = 2LU;

18: int i = 0;

19: if(1>>x2){

20: t0 = -1;

21: t1 = (1&(short)(x18̂U))-1;

22: }

23: while(i>(int)((1U>>t1)+

(char)(128%(10*(25LU&(29%x0)))))){

24: i += (int)(12L/(1 != (int)t1));

25: }

26: if(t0 != -1)__builtin_abort();

27: if(t0 != 0L)__builtin_abort();

28: }

(a) C program

gcc-7.0.1.s gcc-8.0.0.s

main:

subq $24, %rsp

movl $1, %eax

movl $1, 12(%rsp)

movb $0, 11(%rsp)

movzbl 11(%rsp), %ecx

sarl %cl, %eax

testl %eax, %eax

jne .L12

.L2

call abort

.L12

movl 12(%rsp), %eax

andl $1, %eax

subl $1, %eax

testl %eax, %eax

jne .L2

addq $24, %rsp

ret

.

.

.

main:

subq $24, %rsp

movl $1, %edi

movl $1, 12(%rsp)

movb $0, 11(%rsp)

movl %edi, %eax

movzbl 11(%rsp), %ecx

sarl %cl, %eax

testl %eax, %eax

je .L7

movl 12(%rsp), %ecx

movl $-1, %r9d

andl $1, %ecx

subl $1, %ecx

movslq %ecx, %r8

shrl %cl, %edi

.L2

movswl x0(%rip), %esi

movl $29, %eax

cltd

divl %esi

movl $128, %eax

andl $25, %edx

leaq (%rdx,%rdx,4), %rsi

xorl %edx, %edx

addq %rsi, %rsi

divq %rsi

movsbl %dl, %edx

addl %edi, %edx

jns .L3

cmpl $1, %ecx

je .L10

.L3

cmpb $-1, %r9b

jne .L6

testq %r8, %r8

jne .L6

addq $24, %rsp

ret

.L10

ud2

.L7

movl $2, %ecx

xorl %edi, %edi

movl $2, %r8d

xorl %r9d, %r9d

jmp .L2

.L6

call abort

.

.

.

(b) Assembly codes

Figure 8: Program detected regression in GCC-8.0.0
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Table 2: Performance comparison of LLVM versions

target→

reference ↓
3.6 3.8 4.0 5.0 6.0 7.0

3.6 — 6 23 19 20 4

3.8 77 — 22 20 17 2

4.0 275 111 — 33 37 16

5.0 278 203 53 — 13 9

6.0 328 269 132 82 — 8

7.0 191 187 41 26 18 —

Target: x86_64, Option: -O3
Number of test programs: 1,000
CPU: Intel Core i7–6850K 3.60GHz with 32GB RAM

Table 3: Performance comparison between GCC and LLVM

static+dynamic (static only)

target→

reference ↓
GCC-9.0.0 LLVM-7.0.0

GCC-9.0.0 — 324 (404)

LLVM-7.0.0 232 (785) —

Target: x86_64, Option: -O3
Number of test programs: 10,000
CPU: Intel Core i7–6850K 3.60GHz with 32GB RAM

also noted that the latest version has still a few regression from

the older (or even the very old) versions.

Table 3 is a summary of the similar comparison between the

latest versions of GCC and LLVM using 10,000 test programs. The

�gures in the parentheses (404 and 785) are the numbers of errors

detected by only static comparison. After dynamic comparison, we

see that GCC generated faster code than LLVM for 324 programs

while LLVM did better on 232 programs. The two compilers seem

to implement optimizers of di�erent strategies but achieve compa-

rable performance, in terms of the class of the test programs gen-

erated by Orange4. Since di�erent compilers generates di�erent

style of code sequences aside from optimization, assembly codes

tend to di�er more largely than in the experiments in Table 1. This

should leads to larger amount of false positives, but the actual rates

of false positives were 70.4% and 19.8%. We have not yet analyzed

the reason for this asymmetry.

The threshold for the runtime comparison in this experiment

was determined empirically. Table 4 shows the distribution of exe-

cution time di�erences measured in the regression tests. The �rst

row in (a) indicates that the execution time of the codes generated

by GCC-7.2.0 was less than or equal 25% of those by GCC-8.0.0 for

59 test programs out of 425, for which GCC-7.2.0 produced shorter

assembly codes. There were cases where shorter assembly codes

ran slower, but separation is not very clear; some programs fell in

the section between 51%∼100%.

6 CONCLUSION

We have proposed an automated test method to detect compilers’

performance bugs based on mixed static and dynamic code com-

parison. The dynamic execution of the minimized test program

successfully excluded the case where the static comparison fails

to detect the actual performance di�erences. A test system based

Table 4: Distribution of execution time di�erences

(a) GCC-8.0.0 against GCC-7.2.0 (x86_64, -O3)

execution time

by GCC-7.2.0
#di�

∼ 25% 258

26%∼ 50% 50

51%∼ 75% 17

76%∼100% 78

101%∼ 20

(b) LLVM-4.0.0 against LLVM-3.8.0 (x86_64, -O3)

execution time

by LLVM-3.8.0
#di�

∼ 25% 5

26%∼ 50% 6

51%∼ 75% 5

76%∼100% 2

101%∼ 5

on our method successfully detected a performance bug in the lat-

est version of GCC. We also expect that this method can be used

for performance assessment of C compilers.

There is much room for improving the accuracy of static as-

sembly comparison, taking memory accesses as well as instruction

strength into account. The static comparison must be enhanced to

deal with control �ow graphs, especially if we use Csmith or ex-

tended Orange4 with more control statements. We are now also

working on making the assembly comparator retargetable so that

it can support other architecture than x86 and can accept other

formats than GAS.
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