Random Testing of Compilers’ Performance
Based on Mixed Static and Dynamic Code Comparison

Kota Kitaura
Kwansei Gakuin University
Sanda, Hyogo, Japan
kota.kitaura@kwansei.ac.jp

ABSTRACT

This paper proposes an automated test method for detecting per-
formance bugs in compilers. It is based on differential random test-
ing, in which randomly generated programs are compiled by two
different compilers and resulting pairs of assembly codes are com-
pared. Our method attempts to achieve efficient and accurate de-
tection of performance difference, by combining dynamic measure-
ment of execution time with static assembly-level comparison and
test program minimization. In the first step, discrepant pairs of
code sections in the assembly codes are extracted, and then the
sums of the weights of discrepant instructions in the sections are
computed. If significant differences are detected, the test program
is reduced to a small program that still exhibits the static difference
and then the actual execution time of the codes are compared. A
test system has been implemented on top of the random test sys-
tem Orange4, which has successfully detected a regression in the
optimizer of a development version of GCC-8.0.0 (latest as of May,
2017).

CCS CONCEPTS

- Software and its engineering — Compilers; Software perfor-
mance; Software testing and debugging;

KEYWORDS

random test, compiler, optimization, performance test

ACM Reference Format:

Kota Kitaura and Nagisa Ishiura. 2018. Random Testing of Compilers’ Per-

formance Based on Mixed Static and Dynamic Code Comparison. In Pro-

ceedings of the 9th ACM SIGSOFT International Workshop on Automating

TEST Case Design, Selection, and Evaluation (A-TEST ’18), November 5, 2018,

Lake Buena Vista, FL, USA. ACM, New York, NY, USA, 7 pages.
https://doi.org/10.1145/3278186.3278192

1 INTRODUCTION

Since extremely high reliability is required for compilers, which
are infrastructure tools for developing every kind of software, it
is imperative that they should be tested thoroughly. Furthermore,
compilers are also expected to generate superior codes in terms

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
the author(s) must be honored. Abstracting with credit is permitted. To copy other-
wise, or republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.

A-TEST ’18, November 5, 2018, Lake Buena Vista, FL, USA

© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6053-1/18/11...$15.00

https://doi.org/10.1145/3278186.3278192

38

Nagisa Ishiura
Kwansei Gakuin University
Sanda, Hyogo, Japan
nagisa.ishiura@ml.kwansei.ac.jp

of execution speed, memory usage, power consumption, etc., and
thus it is also important to test compilers to confirm if intended
optimization is properly performed.

Validation of compilers is usually done using test suites, large
sets of test programs. Test suites and benchmarks are also used to
assess optimization performance of compilers. In either case, there
should be bugs or unexpected performance degradation (or perfor-
mance bugs) that can not be detected by the test suites, as long as
they are finite.

Automated random test is one of the effective measures to rein-
force validation or performance assessment of compilers by test
suites. It tests compilers with randomly generated programs as
long as time allows. Many random test generators [7-9, 11, 12, 14,
15] have been developed even for C compilers, and there have been
some attempts to detect performance bugs using these random test
generators.

Iwatsuji [6] and Barany [1] proposed differential random test-
ing of compiler optimizers where generated programs are com-
piled with different compilers (or different versions of the same
compiler) and generated codes are compared. Another way of per-
formance testing is to (automatically) optimize generated program
in the source code level (or in the AST level) and compare the codes
generated from original and optimized programs [5]. In either ap-
proach, generated codes are statically compared. This may lead to
cases where a detected code difference does not mean the actual
performance difference.

To address this issue, we propose in this paper a random test
method to detect compilers’ performance bugs based on mixed
static and dynamic code comparison. It is also based on the differ-
ential random testing. In a static comparison step, it tries to detect
a code difference and then minimizes (or reduces) the source pro-
gram to isolate the code difference. Then in a dynamic comparison
step, it measures the run time of the codes to verify if there is the
actual performance difference.

An automated test system for C compiler based on the proposed
method has been developed in Perl5 on top of Orange4 [12]. It
successfully detected regression in the optimizer of GCC-8.0.0 (the
latest version at the time of experiment) and reported it to the de-
veloper. We also show that the proposed method may be used for
performance assessment of C compilers such as GCC and LLVM.

2 RELATED WORK

Figure 1 is an example of performance regression on GCC pre-
sented in [6]. From the C program (test.c), GCC-6.0.0 (a develop-
ment version at the point of the report) generated a longer code
than the previous version. In this paper we call such a case a perfor-
mance bug where a compiler under test fails to perform expected

https://doi.org/10.1145/3278186.3278192
https://doi.org/10.1145/3278186.3278192

A-TEST 18, November 5, 2018, Lake Buena Vista, FL, USA

test.c

1: unsigned int x = 1;

2: int main (void) {

3 long long int a = -2LL;
4: int t =1 <= (a/x);
5
6
7

);
if (t !'=1) { __builtin_abort(); }
return 9;

gcc5.s (GCC-5.2.1 -03)

main:
xorl %eax, %eax

gcc6.s (GCC-6.0.0 -03)

main:

movl x(%rip), %ecx
movq $-2, %rax
cqto

idivg %rex

testq %rax, %rax

jg .L7
xorl %eax, %eax
ret

L7
pushq %rax
call abort

ret

Reported in https://gcc.gnu.org/bugzilla/show_bug.cgi?id=68431.

Figure 1: Example of performance regression [6]

optimization. Although the performance of compilers may refer to
many aspects of generated codes, we focus on speed performance
in this paper, as in most of the existing studies. Unlike the valida-
tion test where generated codes are clearly decided as correct or
not according to the language standard, the boundary for the per-
formance bugs is often ambiguous; it is hard to conclude that 10%
speed-down on a particular source code is a bug. The final decision
is left to the compiler writers in the end, but we can help them by
finding test cases that present substantial speed-down or obvious
missing of expected code transformation.

NULLSTONE [3] is a test suite to evaluate optimization perfor-
mance of C compilers. It consists of about 6,500 tests targeting
about 40 optimization passes. However, as long as the number of
test programs are finite, its detection capability will be limited.

Randprog [4] attempts to test C compiler’s miss-optimization.
By randomly generated C programs, it checks if compilers do not
erase codes accessing volatile variables by mistake. However, this
method does not test whether performance improvement by opti-
mization is performed as intended.

Hashimoto [5] proposed a random test based method to detect
missed arithmetic optimization of C compilers. In this method, as
shown in Figure 2 (a), a test program (org.c) is randomly generated,
to which arithmetic optimization is performed in the AST (abstract
syntax tree) level to get a reference program (opt.c). By comparing
the assembly codes (org.s and opt.s) generated by a compiler under
test, it is checked whether the expected optimization is performed.

Iwatsuji [6] proposed another random test method based on as-
sembly code comparison. As shown in Figure 2 (b), a random pro-
gram (test.c) is compiled with two different compilers and resulting
two assembly codes (testl.s and test2.s) are compared. Regression
may be detected if different versions of the same compiler are used.

While the two methods above depend on relatively simple mea-
sures for comparing assembly codes, such as the number of instruc-
tions, Barany [1] proposed much more sophisticated way of detect-
ing the difference of two assembly codes, laying emphasis on the
amounts of spill code considering loops.

Since all the three methods are based on static analysis, there
are cases where detected differences do not mean actual perfor-
mance differences. Monseley [10] proposed a method for compar-
ing the performance of different versions of the same compiler by

39

Kota Kitaura and Nagisa Ishiura

generate

generate

[compiler]

l compile {

(a) Method in [5]

compile

(b) Method in [6]

compile

Figure 2: Random test of compilers’ performance

comparing their execution traces. It seems to take relatively long
time to acquire and analyze the traces for large scale programs.
Chen [2] directly compares the execution cycles of the codes gen-
erated by different compilers from relatively restricted programs.
The both methods uses benchmark programs but not randomly
generate programs.

3 RANDOM PROGRAM GENERATION AND
ERROR PROGRAM MINIMIZATION

As a tool to generate random test programs, Csmith [15] was em-
ployed in Barany’s method [1]. Csmith is a powerful C program
generator that covers broad range of the C syntax. In this method,
C-Reduce [13] is also used as a minimization tool for the error pro-
grams. C-Reduce is a general purpose error program minimizer
that takes a C program and a command line to judge OK/NG of
the program and outputs a program as small as possible that fails
the check.

Iwatsuji’s and Hashimoto’s methods [5, 6] used Orange3 [11]
as a random program generator. It also generates C programs but
different from Csmith in a few ways. Orange3 knows the runtime
values of all the variables, expressions, and subexpressions in the
program at program generation time, so it can generate long and
complex arithmetic expressions without undefined behavior such
as zero division and signed overflow. On the other hand, it can gen-
erate a sequence of assign statements but not other control state-
ments, so Orange3 is suitable for testing arithmetic optimization
of C compilers. Orange3 has a built-in error program minimizer,
which can process only the programs generated by Orange3 but is
much faster than C-Reduce.

Orange4 [12], which is used in this paper, is a successor to Or-
ange3. It employs a different generation algorithm from Orange3’s
but can generate complex arithmetic expressions without unde-
fined behavior. It can also generate if-statements and for-loops.
Figure 3 is an example of a test program generated by Orange4.
In the main part (lines 26-35) are a for-loop, an if-statement, and
assign statements. Since the runtime values of all the variables are
known at program generation time, the results are compared with
the correct values as in lines 37-39. Orange4 is also equipped with
built-in minimizer which runs as fast as that of Orange3.

In Csmith as well as Orange3 and Orange4, the size of the ran-
dom programs is specified in a configuration file or in a command

https://gcc.gnu.org/bugzilla/show_bug.cgi?id=68431

Random Testing of Compilers’ Performance

. #include <stdio.h>
. #define OK()
. #define NG(fmt,val) __builtin_abort()

. const volatile signed int x9 = -59;
: signed long long x10 = 8198LL;
: signed short x11 = 18332;

1

2

3

4

5

6

7

8:

9: int main (void)
0: {

1 static unsigned long long x@ = 7LLU;
2: static const volatile signed long x1 = @L;
3: signed char x2 = 22;

4: unsigned long x3 = OLU;

5: static unsigned char x4 = 29U;

6: static const signed char x5 = -1;

7: static signed int x6 = 123621;

8: signed int x7 = -7293637;

19: unsigned long long to = 46LLU

20: signed long t1 = 29727

21: unsigned long x8 = 102005473280LU

22: signed long long t2 = OLL;

23: signed char t3 = 3;

24: signed int i;

25:

26: for(i = x9%x6; i < x5+x5; i -= x7+x3) {

27: t0 = x3|x0*x2-x4;

28: t1 = x5%x5-x6+x2/x7;

29: if(x1<<x1) {

30: t2 = x8>>x4/t0+x10*x10+x11;

31: }

32: else

33: t3 = x14|x16;

34:

35: %}

36:

37: if (t0 == 120) { OK(); } else { NG("%d", t6); }
38: if (t1 == 220) { OK(); } else { NG("%d", t6); }
39: if (t3 == 22) { OK(); } else { NG("%d", t6); }
40: return @

41:

Figure 3: Example of a test program generated by Orange4

@ || ® 4
7 L7
O OK
0K
- (5)
L~
L~ 0K
NG
<@~w45
L~
NG

: Kﬂ

Figure 4: Minimization of error program

line. It is adjusted according to the maturity of the compiler un-
der test, but it usually ranges from several hundred lines to sev-
eral thousand lines. Test programs should not be too long because
compilers suddenly slow down when the program size exceeds a
certain threshold. Otherwise, the longer program is the better, be-
cause the combinations or relations among variables, operations,
and branches increases exponentially with the size of the program.

Minimization of error programs is as important task as program
generation, because it is impossible to debug the compiler under
test with an error program consisting of thousands of lines. Fig-
ure 4 shows a general flow of error program minimization. Start-
ing from a program that has detected some error (1), one of the
transformations to reduce the size of the program is applied. The
transformations includes replacing a subexpression by a constant,

40

A-TEST ’18, November 5, 2018, Lake Buena Vista, FL, USA

deletion of a statement, etc. If a transformation eliminates the er-
ror (2), then it is canceled. A transformation is also canceled if it
triggers undefined behavior, which may happen in C-reduce but
not in Orange3 nor Orange4. By accepting only error preserving
transformations, a program (7) is reached on which any possible
transformation erase the error. This is the output of the error pro-
gram minimization. It is not minimum in a strict sense, but called
so because it can not be reduced by any single transformation.

4 MIXED STATIC AND DYNAMIC CODE
COMPARISON

4.1 Outline

Like the methods of Iwatsuji’s and Barany’s, we compare a pair
of codes generated by different compilers or different versions of
compilers from each randomly generated program.

One shortcoming of static code comparison approach is that we
do not tell whether there is really performance difference even if
significant differences are detected. However, simple comparison
of execution time does not work. We must use long test programs
in performance test as well as in validation test to increase detec-
tion capability. For such long test programs, even if performance
differences existed, almost no difference would be observed as a
hole. There are even cases that performance losses and gains may
cancel each other.

To address this issue, we propose a comparison method consist-
ing of two stages. In the first stage, we statically compare assembly
codes. If we find a significant difference, we minimize the test pro-
gram to isolate the difference. Then, in the second stage, we run
the two codes generated from the minimized program to measure
their actual execution time.

By this method, C programs that reveal real performance differ-
ences will be obtained. Since minimization in the first stage elimi-
nates parts of the test programs that results in the same instruction
sequences for the both compilers, the percentage of the different
instruction sequences will be much increased so that it becomes
easier to detect the difference in execution time.

4.2 Static Comparison of Assembly Codes

In the static comparison of the first stage, we only compare pairs of
sections in which the codes disagree, ignoring the sections where
codes are the same. The comparison consists of two steps.

(1) Identifying sections where the assembly codes differ.

(2) Comparing the sums of the weights of mismatched instruc-
tions in each section pair to decide if it potentially causes
performance difference.

Figure 5 illustrates how the first step is performed. Two assem-
bly codes testl.s and test2.s are being compared. By using a text
level differencer on the assembly codes, the pair of code sections
where more than k instructions (k is about 7) are exactly the same
are eliminated. This leaves pairs of mismatched code sections (Si,),
(52,53), and (S3, S3). The pairs are further investigated in the sec-
ond step. If elther one of them has a meaningful difference, then
testl.s and test2.s are judged to be different.

In the second step, mismatched instructions in each pair of mis-
matched sections are identified and the difference is evaluated based

A-TEST 18, November 5, 2018, Lake Buena Vista, FL, USA

tl.s t2.s S1 S’
/ / mov and
_ div test
mismatch mov
T matc y
S2 A \\ xor
__mismatch , \ add
— Sz \ div
 match \'\ mov add
S // \ |add j
A \.\ i cmp
mismatch g3’ '

Figure 5: Extraction of mismatched section pairs in assem-
bly codes

S1 S1’ S1 St

mov and mov (1) | Jand

mov mov mov mov

clt sub clt sub (€8]

div test div 0) | | test (D

mov mov (1)

and and

lea —— | lea (D)

Xor XOr (D)

add add (D)

div div (40)

mov add mov (1) | {add

add j add — | |j

j cmp i — ||emp (0
sum (87) sum (3)

Figure 6: Mismatch instructions and their weighted sums

on the weighted sums of mismatched instructions. For example, in
Figure 6, a pair of sections S1 and S] is being compared. At first, in-
struction pairs of the same opcodes are identified, as indicated by
the red lines. Then the other instructions are mismatched instruc-
tions. For each of $1 and S, the weighted sum of the mismatched
instructions are computed. Since it is hard to define theoretically
valid performance costs to the instructions, the weights are empiri-
cally determined; large weights are give to multiplication, division,
and jump instructions. If the ratio of the sums exceeds a predeter-
mined threshold, which is also empirically decided, then S; and S{
is judged to have a significant difference.

41

Kota Kitaura and Nagisa Ishiura

(1)After minimization | (2)For measurement of execution time

#include <stdio.h>

int main@()
__attribute__((noinline));
int main (void)

#include <stdio.h>

long 1i;
for(i=0;i<10000000L ;i++)

int rc = maind();
return 0;

}
int main (void){ int maino(){

W —_OVONOUIAW N —

return 0; return 0;

Figure 7: Conversion for execution time measurement

4.3 Dynamic Codes Comparison Based on
Execution Time Measurement

The difference in the weighted sums in the static comparison does
not necessarily mean the difference in execution time on actual
machines. Longer codes are often faster because of various opti-
mization such as loop unfolding, and function inlining.

In the method of this paper, we make final decision by measur-
ing the execution time on actual machines.

There are several ways to measure execution time on a real ma-
chine, out of which we adopt a simple one that uses the UNIX time
command. Since the execution time of the minimized program be-
comes very small, the code is looped within the test program. An
example of code conversion on the test program is shown in Figure
7. (1) is an original (minimized) test program from the first stage,
and (2) is an augmented program for measurement. Function main
in (1) is renamed to main® in (2) and called from new main in (2).
In order to prevent inline expansion of main® (and subsequent op-
timization), a directive to forcibly suppress inline expansion is in-
serted in the second line.

5 EXPERIMENTAL RESULTS

A random test system based on the method proposed in this paper
has been implemented on top of Orange4. It is written in Perl5
and runs on Ubuntu 16.04 LTS environment. Currently, the static
assembly comparator assumes the GAS format and only supports
the x86 architecture.

Performance tests of the optimizers of GCC-8.0.0 against GCC-
7.2.0, and LLVM-4.0 against LLVM-3.8 were conducted. For all the
compilers, the target was x86_64 and the option tested was -O3.
The execution time was measured on Core i5-6200U 2.30GHzx4
with 7.6 GB RAM. The average number of operations per a test
program was set to 400. The version of Orange4 described in [12]
was used in this experiment, which generated programs with only
scalar variables, assign statements with arithmetic expressions, and
if and for statements. The thresholds for assembly code compar-
ison and execution time comparison was set to 60% and 50%, re-
spectively.

The results are summarized in Table 1. In both tables (a) and
(b), “#test” lists the number of test programs, “#diff (assembly)”
the number of the programs which lead to significant difference
in assembly codes, and “#diff (time)” the number of the programs
which detected that the compiler of the newer version generated
slow codes. For reference, we ran the same test also on Intel Xeon

Random Testing of Compilers’ Performance

Table 1: Results of regression tests

(a) GCC-8.0.0 against GCC-7.2.0 (x86_64, -O3)

time #diff #diff

[h] #test (assembly) (time)

Proposed 12 15,348 425 308
Iwatsuji [6] 12 16,049 18 (11)

(b) LLVM-4.0.0 against LLVM-3.8.0 (x86_64, -O3)

time #diff #diff

[h] #test (assembly) (time)

Proposed 12 11,217 23 11
Iwatsuji [6] | 12 14,503 0 (0)

Core i5-6200U 2.30GHzx4, RAM 7.6GB, Ubuntu 16.04LTS

Target: x86_64, Option: -O3

Average ops per test: 400

Thres. for assembly comparison: 60%, Thres. for runtime comparison: 50%

E3-1276 v3 2.30GHzx4 with 15.6GiB RAM, but the results were
exactly the same.

In table (a), we can see that the method proposed in this pa-
per detected 425 differences by assembly code comparison, out of
which 308 were confirmed to be regression errors by execution.
Namely, assembly codes generated by GCC-8.0.0 were longer than
those generated by GCC-7.2.0 for the 425 test programs out of
15,348, and actually slower for the 308 programs. Namely, there
were 117 false positives, which accounts for 27.5% of 425 errors. For
comparison, the previous (Iwatsuji’s) method [6] detected only 18
assembly code differences’. All the 18 cases were included in the
425 cases detected by the proposed method. This means that the
proposed method detected regression errors missed by the previ-
ous method. For reference, “(11)” is the result of dynamic compari-
son on the 18 cases. There were also false positives (38.9%) in Iwat-
suji’s method. In table (b), we can see that the proposed method
succeeded in detecting 11 regression errors in LLVM-4.0.0, which
the previous method failed to find.

Figure 8 is an example of the test programs that detected per-
formance degradation in the latest version of GCC-8.0.0 as of May
2017 (against GCC-7.0.1). This regression was reported to the de-
velopment team through GCC’s Bugzilla > and was fixed.

Table 2 shows the result of performance comparison among six
versions of LLVM by the proposed method. Every pair of the ver-
sions was tested with 1,000 random test programs. Each column
lists the number of test programs for which the version generated
slower codes than the other versions. For example, “6” in the 3.8’s
column and the 3.6’s row tells that LLVM-3.8 generated slower
codes than LLVM-3.6 for 6 test programs, while “77” in the lower
left cell tells that LLVM-3.8 generated faster code than LLVM-3.6
for 77 test programs. Looking at the bottom row for LLVM-7.0, the
numbers (191, 187, 41, - - -) are decreasing as the version number
increases, which indicates that performance has been improved
on each version-up. Note that this also means that the proposed
method of performance comparison has a certain accuracy. It is

! Twatsuji’s method originally used Orange3 as a random program generator, but we
used Orange4 in this experiment. Thus, the proposed and Iwatsuji’s methods are com-
pared with exactly the same sequence of random programs.
https://gee.gnu.org/bugzilla/show_bug.cgi?id=81165

42

A-TEST ’18, November 5, 2018, Lake Buena Vista, FL, USA

1: void func() __attribute__((noinline));
2:
3: short x0 = 15;
4:
5: int main (void)
6: {
7: long i;
8: for(i = 0; i < 100000000L; i++){
9: func(Q);
10: 3}
11 return 0;
12:)
13: void func(){
14: volatile int x1 = 1U;
15: volatile char x2 = 0;
16: char to = 0;
17: unsigned long t1 = 2LU;
18: int i = o;
19: if(1>>x2){
20: to = -1;
21: t1 = (1&(short) (x18U))-1;
22: 3}
23: while(i>(int) ((1U>>t1)+

(char) (128%(10% (25LU&(29%x0)))))){
24: i += (int)(12L/(1 1= (int)t1));
25: 3}
26: if(t@ != -1)__builtin_abort();
27: if(t0 != oL)__builtin_abort();
28: %}

(a) C program

gce-7.0.1.s gcc-8.0.0.s

main:

ret

subq $24, %rsp
movl $1, %eax
movl $1, 12(%rsp)
movb $0, 11(%rsp)

movzbl 11(%rsp), %ecx
sarl %cl, %eax
testl %eax, %eax

jne .L2

addq $24, %rsp

main:
subq $24, %rsp

movl $1, %edi

movl $1, 12(%rsp)
movb $0, 11(%rsp)
movl %edi, %eax
movzbl 11(%rsp), %ecx
sarl %cl, %eax

testl %eax, %eax

jne .L12 .
je .L7
movl 12(%rsp), %ecx
movl $-1, %rod
andl $1, %ecx
subl $1, %ecx
L2 movslq %ecx, %r8
call abort shrl %cl, %edi
.L12 L2
movl 12(%rsp), %eax movswl x@(%rip), %esi
andl $1, %eax movl $29, %eax
subl $1, %eax cltd
testl %eax, %eax divl %esi

movl $128, %eax
andl $25, %edx

xorl %edx, %edx
addq %rsi, %rsi
divqg %rsi
movsbl %dl, %edx
addl %edi, %edx
jns .L3

cmpl $1, %ecx
je .L10

.L3

cmpb $-1, %r9b
jne .L6

testq %r8, %r8
jne .L6

addq $24, %rsp
ret

.L10

ud2

L7

movl $2, %ecx
xorl %edi, %edi
movl $2, %r8d
xorl %r9d, %r9d
jmp .L2

.L6

call abort

(b) Assembly codes

Figure 8: Program detected regression in GCC-8.0.0

leaq (%rdx,%rdx,4), %rsi

https://gcc.gnu.org/bugzilla/show_bug.cgi?id=81165

A-TEST 18, November 5, 2018, Lake Buena Vista, FL, USA

Table 2: Performance comparison of LLVM versions

target—
3.6 3.8 40 50 6.0 7.0
reference |
3.6 — 6 23 19 20
3.8 77 — 22 20 17 2
4.0 | 275 111 — 33 37 16
5.0 | 278 203 53 — 13 9
6.0 | 328 269 132 82 — 8
7.0 | 191 187 41 26 18 —

Target: x86_64, Option: -O3
Number of test programs: 1,000
CPU: Intel Core i7-6850K 3.60GHz with 32GB RAM

Table 3: Performance comparison between GCC and LLVM

static+dynamic (static only)

fargel=> | 50C-0.00 LLVM-7.0.0
reference |
GCC-9.00 . 324 (404)
LLVM-7.0.0 | 232 (785) -

Target: x86_64, Option: -O3
Number of test programs: 10,000
CPU: Intel Core i7-6850K 3.60GHz with 32GB RAM

also noted that the latest version has still a few regression from
the older (or even the very old) versions.

Table 3 is a summary of the similar comparison between the
latest versions of GCC and LLVM using 10,000 test programs. The
figures in the parentheses (404 and 785) are the numbers of errors
detected by only static comparison. After dynamic comparison, we
see that GCC generated faster code than LLVM for 324 programs
while LLVM did better on 232 programs. The two compilers seem
to implement optimizers of different strategies but achieve compa-
rable performance, in terms of the class of the test programs gen-
erated by Orange4. Since different compilers generates different
style of code sequences aside from optimization, assembly codes
tend to differ more largely than in the experiments in Table 1. This
should leads to larger amount of false positives, but the actual rates
of false positives were 70.4% and 19.8%. We have not yet analyzed
the reason for this asymmetry.

The threshold for the runtime comparison in this experiment
was determined empirically. Table 4 shows the distribution of exe-
cution time differences measured in the regression tests. The first
row in (a) indicates that the execution time of the codes generated
by GCC-7.2.0 was less than or equal 25% of those by GCC-8.0.0 for
59 test programs out of 425, for which GCC-7.2.0 produced shorter
assembly codes. There were cases where shorter assembly codes
ran slower, but separation is not very clear; some programs fell in
the section between 51%~100%.

6 CONCLUSION

We have proposed an automated test method to detect compilers’
performance bugs based on mixed static and dynamic code com-
parison. The dynamic execution of the minimized test program
successfully excluded the case where the static comparison fails
to detect the actual performance differences. A test system based

43

Kota Kitaura and Nagisa Ishiura

Table 4: Distribution of execution time differences

(a) GCC-8.0.0 against GCC-7.2.0 (x86_64, -O3)

execution time

by Goc-7.2.0 | aiff
~ 25% | 258

26%~ 50% | 50
51%~ 75% | 17
76%~100% | 78
101%~ 20

(b) LLVM-4.0.0 against LLVM-3.8.0 (x86_64, -O3)

execution time

by LLVM-3.80 | 9iff
~ 25% 5

26%~ 50% 6
51%~ 75% 5
76%~100% | 2
101%~ 5

on our method successfully detected a performance bug in the lat-
est version of GCC. We also expect that this method can be used
for performance assessment of C compilers.

There is much room for improving the accuracy of static as-
sembly comparison, taking memory accesses as well as instruction
strength into account. The static comparison must be enhanced to
deal with control flow graphs, especially if we use Csmith or ex-
tended Orange4 with more control statements. We are now also
working on making the assembly comparator retargetable so that
it can support other architecture than x86 and can accept other
formats than GAS.

ACKNOWLEDGMENTS

First of all, we would like to thank the reviewer for the valuable
feedback. Authors would like to thank Mr. S. Takakura and all the
members of the Ishiura Laboratory for their discussion on this re-
search. This work was partly supported by JSPS Kakenhi Grant
#25330073.

REFERENCES

[1] G.Barany. 2018. Finding Missed Compiler Optimizations by Differential Testing.
In Proceedings of 27th International Conference on Compiler Construction (CC’18).
82-91. https://doi.org/10.1145/3178372.3179521

[2] Y. Chen and J. Regehr. 2010. Comparing Compiler Optimization. online. Re-

trieved July 11, 2018 from https://blog.regehr.org/archives/320

Nullstone Corporation. 2012. NULLSTONE for C. online. Retrieved June 21,

2018 from http://www.nullstone.com/

E. Eide and J. Regehr. 2008. Volatiles Are Miscompiled, and What to Do about

It. In Proceedings of the 8th ACM International Conference on Embedded Software.

255-264. https://doi.org/10.1145/1450058.1450093

[5] A. Hashimoto and N. Ishiura. 2016. Detecting Arithmetic Optimiza-

tion Opportunities for C Compilers by Randomly Generated Equivalent

Programs. In IPS] Trans. System LSI Design Methodology, Vol. 9. 21-29.

https://doi.org/10.2197/ipsjtsldm.9.21

M. Iwatsuji, A. Hashimoto, and N. Ishiura. 2016. Detecting Missed Arithmetic

Optimization in C Compilers by Differential Random Testing (short paper). In

Proceedings of the Workshop on Synthesis And System Integration of Mixed Infor-

mation Technologies (SASIMI 2016). 2-3.

[7] V.Le, C.Sun, and Z. Su. 2015. Finding Deep Compiler Bugs via Guided Stochastic
Program Mutation. In Proceedings of the 2015 ACM SIGPLAN International Con-
ference on Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA 2015). 386-399. https://doi.org/10.1145/2814270.2814319

(3]
[4]

https://doi.org/10.1145/3178372.3179521
https://blog.regehr.org/archives/320
http://www.nullstone.com/
https://doi.org/10.1145/1450058.1450093
https://doi.org/10.2197/ipsjtsldm.9.21
https://doi.org/10.1145/2814270.2814319

Random Testing of Compilers’ Performance

(8]

[9

[10]

[11]

[12]

V. Le, C. Sun, and Z. Su. 2015. Randomized Stress-Testing of Link-Time optimiz-
ers. In Proceedings of the 2015 International Symposium on Software Testing and
Analysis (ISSTA 2015). 327-337. https://doi.org/10.1145/2771783.2771785

C. Lindig. 2005. Random testing of C calling conventions. In Proceedings of the
sixth international symposium on Automated analysis-driven debugging (AADE-
BUG’05). 3-12. hitps://doi.org/10.1145/1085130.1085132

T. Moseley, D. Grunwald, and R. Peri. 2009. OptiScope: Performance
Accountability for Optimizing Compilers. In Proceedings of 2009 Interna-
tional Symposium on Code Generation and Optimization (CGO 2009). 254-264.
https://doi.org/10.1109/CGO.2009.26

E. Nagai, A. Hashimoto, and N. Ishiura. 2014. Reinforcing Random Testing of
Arithmetic Optimization of C Compilers by Scaling up Size and Number of Ex-
pressions. In IPST Transactions on System LSI Design Methodology, Vol. 7. 91-100.
https://doi.org/10.2197/ipsjtsldm.7.91

K. Nakamura and N. Ishiura. 2016. Random Testing of C Compilers Based on
Test Program Generation by Equivalence Transformation. In Proceedings of 2016

44

A-TEST ’18, November 5, 2018, Lake Buena Vista, FL, USA

IEEE Asia and Pacific Conference on Circuits and Systems (APCCAS 2016). 676~
679. https://doi.org/10.1109/APCCAS.2016.7804063

[13] J. Regehr, Y. Chen, P. Cuoq, E. Eide, C. Ellison, and X. Yang. 2012. Test-case Re-

(14]

duction for C Compiler Bugs. In Proceedings of the 33rd ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation (PLDI’12). 335-346.
https://doi.org/10.1145/2254064.2254104

C. Sun, V. Le, and Z. Su. 2016. Finding compiler bugs via live code mutation.
In Proceedings of the 2016 ACM SIGPLAN International Conference on Object-
Oriented Programming, Systems, Languages, and Applications (OOPSLA 2016).
849-863. https://doi.org/10.1145/3022671.2984038

X. Yang, Y. Chen, E. Eide, and]J. Regehr. 2011. Finding and Understand-
ing Bugs in C Compilers. In Proceedings of the 32nd ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation (PLDI'11). 283-294.
https://doi.org/10.1145/1993498.1993532

https://doi.org/10.1145/2771783.2771785
https://doi.org/10.1145/1085130.1085132
https://doi.org/10.1109/CGO.2009.26
https://doi.org/10.2197/ipsjtsldm.7.91
https://doi.org/10.1109/APCCAS.2016.7804063
https://doi.org/10.1145/2254064.2254104
https://doi.org/10.1145/3022671.2984038
https://doi.org/10.1145/1993498.1993532

	Abstract
	1 Introduction
	2 Related work
	3 Random Program Generation and Error Program Minimization
	4 Mixed Static and Dynamic Code Comparison
	4.1 Outline
	4.2 Static Comparison of Assembly Codes
	4.3 Dynamic Codes Comparison Based on Execution Time Measurement

	5 Experimental Results
	6 Conclusion
	Acknowledgments
	References

