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ABSTRACT

This paper proposes a method of reinforcing random program gen-

eration for automated testing of C compilers. Although program

generation based on equivalence transformation is a promising

method for detecting deep bugs in compilers, the range of syntax it

can cover has been narrower than the production rule based meth-

ods. While the conventional method based on equivalence trans-

formation can only generate programswith scalar variables, assign

statements, if and for statements, the proposed method attempts

to extend them to handle arrays, structures, unions, as well aswhile

and switch statements and function calls. A random test system,

Orange4, extended with the proposed method has detected bugs

in the latest development versions of GCC-8.0.0 and LLVM/Clang-

6.0 which had been missed by the existing test methods.
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1 INTRODUCTION

Since compilers are fundamental tools for software development,

they must be highly reliable. While front-end modules for lexical

and syntax analysis of the mature compilers are stable, middle-end
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and back-end modules in charge of optimization and code gener-

ation are continuously modi�ed to incorporate aggressive and so-

phisticated optimization algorithms. This leads to frequent occur-

rence of bugs, and many bugs are actually being reported to their

bug databases 1 2.

The test of compilers usually relies on test suites, huge sets of

test programs, such as [1–3, 5]. Although they are the collection

of good test cases and compilers are tested e�ciently, it is theo-

retically impossible to validate compilers completely with a �nite

number of test programs.

Automated random test is a powerful tool to compensate this

weakness. Various random test methods of C compiler have been

proposed so far, amongwhich one of the outstanding ones is Csmith

[14]. It is a comprehensive random test generator which covers the

broad range of C language grammar. It detected 79 and 202 new

bugs in GCC and LLVM during the three years to 2010 and greatly

contributed to the improvement of the quality of these open source

compilers.

Csmith basically generates random test programs based only on

grammar rules, which is one of the reasons why it can cover wide

range of syntax relatively easily. However, since it does not keep

track of the execution result of the generated programs, theymight

end up with unde�ned behavior such as zero division or out of

bounds access of arrays. To avoid generating invalid test programs

with unde�ned behavior, Csmith imposes restrictions on the form

of sentences and expressions, such as that division must always ap-

pear in subexpression like (B !=0 ?A/B :A). Thus, while Csmith

can cover a wide range of syntax, this kind of restriction limits the

class of programs it can generate.

On the other hand, in Orange3 [10] and Orange4 [11], test pro-

grams are generated by using semantic information of the program

in combination with the grammar rules. By keeping track of the

values of all the variables and expressions in the program at pro-

gram generation time, they avoid generation of illegal programs

without adding restrictions on sentences and expressions. Espe-

cially, it can generate long and complex expressions for testing

compiler arithmetic optimization, and they detected bugs in GCC

and LLVM that had not been detected by Csmith.

In this approach, however, a data structure to represent the se-

mantics of the generated program must be constructed along with

the syntax tree, which complicates the program generation pro-

cess. For this reason, Orange3 and Orange4 can generate programs

in which variables are only scalar and control statements are only

if and for statements.

1https://gcc.gnu.org/bugzilla/
2https://bugs.llvm.org/
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Figure 1: Random testing of compilers

1: #pragma pack(push)
2: #pragma pack(1)
3: struct S1 {
4: volatile int32_t f0;
5: struct S0 f4;
6: volatile uint8_t f7;
7: };
8: #pragma pack(pop)
9: union U3 {
10: const uint32_t f0;
11: const volatile int64_t f1;
12: int32_t f2;
13: };
14: ...
15: static uint32_t * func_1(void)
16:
17: {
18: ...
19: if (func_2(g_31[3])) {
20: for (i = 0; i < 1; i++)
21: l_96[i] = &g_97;
22: (****g_1658) = ((((safe_mod_func_int32_t_s_s(
23: g_450[(g_133.f6 + 2)][(g_133.f6 + 3)], g_62)) >=
24: l_172), 0x5318L), (g_1725, l_1726));
25: (*p_61) = ((*g_821) |= (safe_lshift_func_uint8_t_u_u(
26: ((safe_mul_func_uint8_t_u_u(g_22.f1, l_1371)) |
27: ((++l_1664) > l_1667)), l_1336)));
28: }
29: ...
30: }
31: ...
32: int main ( int argc, char* argv[])
33: {
34: ...
35: func_1();
36: ...
37: }

Figure 2: Test program generated by Csmith

In this paper, we propose a method of extending random C pro-

gram generators that use semantic information with more sophis-

ticated data types and control statements. As for the data types,

arrays, structures, unions, and arbitrary nests of them can be gener-

ated. Regarding the control statements, function calls, while state-

ments, and switch statements may be generated in addition to if

and for statements.

We have implemented a random test system of C compilers on

top of Orange4, which covers C syntax almost comparable to Csmith,

and can generate a certain class of programs which can not be gen-

erated by Csmith. It successfully found error producing programs

for the latest development versions of GCC-8.0.0 and LLVM/Clang-

6.0, which are di�cult to generate by the existing other methods.

2 RELATED WORK

2.1 Random Testing of Compilers

Figure 1 shows a general �ow of compiler random testing. In the

main loop, random program generation, compilation, and execu-

tion is repeated as long as time allows. If an error such as a crash

of the compiler or an incorrect execution result is detected, the pro-

gram is saved for later analysis. The error inducing test program

is called an error program. The size of the random programs is ad-

justed to the compiler under test, but typically ranges from several

hundred lines to several thousand lines. Since it is impossible to de-

bug the compiler given such a large error program, it isminimized

or reduced; a test program as small as possible and yet produces

the error is searched.

There are two major challenges in compiler random testing: (1)

how to decide if the execution results of randomly generated pro-

grams are correct, and (2) how to avoid generating unde�ned be-

havior such as zero division, integer over�ow, out-of-bounds array

access, etc.

There are two major approaches to deal with the �rst one; a

di�erential testing method and an oracle based method. In the dif-

ferential testing, the same test program is compiled with di�er-

ent compilers and the execution results (the outputs from the pro-

gram) are compared. Csmith [14] is based on the di�erential test-

ing method. On the other hand, in the oracle based method, the

expected outputs are somehow known before or during program

generation, based on which the correctness of the execution result

is judged. Quest [9] for testing function calls and Orange3 [10] and

Orange4 [11] for testing the arithmetic optimization fall in this cat-

egory. In the di�erential testing, the second challenge of avoiding

unde�ned behavior must be somehow resolved. One way is adding

some restrictions on grammar rules. In oracle based method, it is

relatively easy to avoid unde�ned behavior, but how to maintain

the semantic information during program generation becomes an

issue.

Regarding program generation, there are two approaches; one

is based on production rules and the other is based on equiva-

lent transformations on test programs. Quest, Csmith, Orange3 are

based on the former approach. Proteus [8], Athena [7], andHermes

[13] generate new test cases from existing test programs (such as

those generated by Csmith). Orange4 generates long random pro-

grams from an obvious seed program by repeated applications of

equivalence transformations.

2.2 Csmith

An example of a test program generated by Csmith [14] is shown

in Figure 2. Arrays, structures/unions, pointers as well as scalar

variables are generated. Regarding control �ow, if statements, for

statements, function calls, goto statements, etc. are generated.

Since Csmith does not know the behavior of the test program at

generation time, it is devised so that the programdoes not cause un-

de�ned behavior. For example, in line 26, safe_mul_func_uint8

_t_u_u is a macro to perform multiplication, but it just returns the

�rst operand if over�ow is detected by examining the operands.

So the operation is always guarded. To avoid an in�nite loop, the

loop bounds of for statements are constants, as in line 20. An array

subscript is limited to a loop variable whose range is known (as

in line 21), or a sum of a constant and a variable whose values is

known. While and switch statements are not generated in Csmith,

probably to avoid in�nitewhile loops and switch statements which

mostly select default clauses.

As a tool to minimize error programs detected by Csmith, C-

Reduce [12] is used. It is a general-purposeminimization tool, which

takes a source code of the C program and the command line for er-

ror judgment and outputs the reduced program that still fails the

test. It tries to reduce the program by repeatedly applying size re-

ducing transformations. The transformationsmay cause unde�ned

behavior, which is checked by a static analyzer. If unde�ned behav-

ior is detected, the application of the transformation is canceled

10
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and another transformation is tried. Thus, minimization may take

long time especially when unde�ned behavior occurs frequently.

2.3 Orange4

An example of a test program generated by Orange4 [11] is shown

in Figure 3. Orange4 keeps track of the values of all variables and

expressions at program generation time, so it can generate long

and complex arithmetic expressions without guards to avoid unde-

�ned behavior. It can also generate expressions for the loop bounds

(as in line 12). The test program judges whether the execution re-

sults are correct or not by itself comparing the values of the vari-

ables with the expected value as in lines 22–24. However, Orange4

can generate only for and if statements, and scalar variables.

InOrange4, large random test programs are generated by repeat-

edly applying equivalence transformation (statement addition and

expression expansion) of a program from an obvious program that

includes only “return 0;” in the main function. All the complex

expressions are generated by equivalence transformations from

constants (whose values are known, of course), as shown in Fig-

ure 4. The value (5) of the expression is �rst determined, and then

it is expanded to an expression with the same value (2 + 3). This

is repeated recursively. Unde�ned behavior is easily excluded by

avoiding problematic operands. It is also possible to choose the

boundary values as operands, which contributes to enhance bug

detection capability.

As an internal representation during program generation (and

also error programminimization), Orange4 builds anAST (abstract

syntax tree) with the runtime value annotated to every variable

and subexpression. The runtime value is unique, which means that

Orange4 generates test programs in which each variable may be

assigned plural times but the same value is assigned every time.

Orange4 is equipped with a built-in error program minimizer.

Transformations to reduce program size are applied as long as the

error remains. Note that the transformations are applied on the

AST with semantic information. Since transformations that incurs

unde�ned behavior are detected before application, backtracks re-

garding unde�ned behavior never happen.

While the semantic information attached to AST is bene�cial in

many ways, it is a burden when we want to handle broader syntax,

for we must keep the runtime value of every variable unique.

3 EXTENSION OF DATA TYPES AND

CONTROL STATEMENTS

In this paper, we propose a method of increasing the variety of

data types and control statements in equivalence transformation

based random program generation. As for data types, arrays, struc-

tures, and unions, and arbitrary nests of them are newly intro-

duced. As new control statements, function calls,while statements,

and switch statements are added.

3.1 Extension of Data Types

3.1.1 Outline. Even if aggregate and compound data types are in-

troduced, it is a scalar member or a scalar element that is refer-

enced in expressions. Thus, slight extension of the expression gen-

eration method of Orange4 is enough to handle those new data

1: #define OK()
2: #define NG(fmt,val) __builtin_abort()
3: const volatile signed int x9 = -59;
4: int main (void)
5: {
6: static unsigned long long x0 = 7LLU;
7: static const volatile signed long x1 = 0L;
8: ...
9: int t0 = 46;
10: signed long t1 = 297271L;
11: ...
12: for( i = x9*x6-x8; i < x5+x5; i -= x7+x3 ) {
13: t0 = x3|x0*x2-x4;
14: t1 = x5*x5-x6+x2/x7;
15: if( x1<<x1 ) {
16: t2 = x8>>x4/t0+x10*x10+x11;
17: }
18: else {
19: t3 = x14|x16;
20: }
21: }
22: if (t0 == 120) { OK(); } else { NG("%d", t6); }
23: if (t1 == 220) { OK(); } else { NG("%d", t6); }
24: if (t3 == 22) { OK(); } else { NG("%d", t6); }
25: return 0;
26: }

Figure 3: Test program generated by Orange4

Figure 4: Derivation of expressions in Orange4

Figure 5: Extended version of expression derivation

types. Figure 5 shows an extended version of expression gener-

ation. When expanding constant 5 using addition, a member of

nested data structure (x2.m1[2][3].m4) can be used in place of a

scalar variable (in parallel with this, a data structure to represent

the array and structures is build). In the next step, reference to the

array element is regarded as a kind of arithmetic operation ([][])

and constants (2 and 3) are further expanded. Arrays, structures,

and unions may recursively appear in these expressions.

In addition, aggregate variables may be passed as arguments to

functions calls which will be discussed in the next subsection.

3.1.2 Arrays. An example of a program containing arrays gener-

ated by our method is shown in Figure 6. Arrays’ dimensions, sizes,

basic types, and initial values are randomly determined (as in lines

8–9). They may be either local or global (or static global). Access

to array elements may appear in the same places in the program

as scalar variables; it can be assigned and may be referenced multi-

ple times (as in lines 11–14). Collation with expected values is also

done to array elements (as in line 16).

11
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1: int func0(int a0[5], long a1) {
2: ...
3: t50 = a0[2] + x43;
4: if (t50 == -59000) {OK();} else {NG();}
5: return t50 + x51 - a0[4];
6: }
7: int main(void) {
8: int x6[5] = {1227,4,-59433,-106,24};
9: int t42[3][5] = { {-3290,559,23085,26668,-38567},

{358148,8,4,35388,85600},
{12594474,-293697,979,-125774,1138055} };

10: ...
11: t42[1][2] = (x4 - x3) - func0(x6, x11 * x12) ;// = 100
12: unsigned int t48[x6[1] + t42[1][2]];
13: t48[0] = x6[1] * x11;
14: t42[x12][t4[4]] = (x5 && t48[x16 + t1]) + t2;
15: ...
16: if (t42[1][2] == 100) {OK();} else {NG();}
17: }

Figure 6: Test program with arrays

Subscripts may be general expressions and may contain again

references to array elements (as well as to structures, unions). Note

that they never cause out-of-bounds accesses, for they are expanded

from constants within the array bounds. This is one of the power-

ful features of the proposed method which has not be realized in

the other existing methods.

This feature is used also to generate variable-length arrays, as

shown in line 12. An array may be declared with its size speci�ed

by an expression. This is possible because the run time value of the

expression is controllable at generation time and never be negative

nor too large.

Besides the element accesses, an entire array may be passed as

an argument of functions (as in line 1). The array variable can be

referenced in the function in the same way as local array variables.

How to realize generation of array variables is rather straightfor-

ward. Basically, each array elements is given an entry in variable

instance table and the same information as a scalar variable (the

lexical name, the initial value, the runtime value, etc.) is also de-

�ned to the array element. Passing of array arguments is also real-

ized in a simple way. When generating a call to a function with ag-

gregate arguments, local variables with the same aggregate types

are declared, which are passed to the function.

3.1.3 Structures and Unions. Figure 7 shows an example of a pro-

gram including structures and unions generated by this method.

As declared in lines 1–13, members of the structures/unions may

be any of a scalar element, an array, a structure, or a union. Arbi-

trary levels of nested structures/unions are allowed (recursive def-

inition is prohibited, though). One limitation regarding a union is

that only the �rst member may be accessed; a union may be initial-

ized by the �rst member (as in line 20) and only the �rst member

(x1.m0) may be referenced or de�ned (as in lines 22–23).

3.2 Extension of Control Statements

3.2.1 Outline. As for function calls and while statements, restric-

tions on derivation are imposed so that the run time values of all

the variables are kept unique. On the other hand, by making use

of the semantic information, generation of in�nite while loops are

avoided.

3.2.2 Function Calls. In order to maintain consistency of the se-

mantic information that each variable has a unique value in a pro-

gram, we enforce the following restrictions on function calls:

1: struct s0 {
2: signed int m0;
3: unsigned int m1;
4: };
5: union u0 {
6: signed int m0;
7: struct s0 m1;
8: };
9: struct s1 {
10: signed int m0[2][2];
11: union u0 m1;
12: struct s0 m2[2];
13: };
14: void func0(struct s1 a0, long a1) {
15: int t50 = a0.m0.[0][0] + x43;
16: if (t50 == -59000) {OK();} else {NG();}
17: }
18: int main(void) {
19: struct s0 t0 = {64, 33};
20: union u0 x1= {16};
21: struct s1 x2 = {{{0, 3}, {2, 8}},

{66}, {{125, 33}, {64, 666}}};
...

22: func0(x2, x33 + x1.m0);
23: t0.m1 = x3 + x1.m0 - x2.m2[x3-x4].m1 - x15;
24: if (t0.m1 == 647) {OK();} else {NG();}
25: ...
26: }

Figure 7: Test program with structures/unions

• A functionmay be called plural times, but the same function

must be called exactly with the same argument values every

time.

• A function returns the same value every time.

Figure 8 shows an example of generating de�nition and calls of a

function. In the upper code in the �gure, function f1 is called twice

in lines 13–14, with the same arguments 5 and 9. f1 is de�ned to

always return 5 in line 8. Then this code is transformed into the

lower code by expanding the constants into the expressions.

If one of the variables in the expressions is volatile, compilers

can not tell that f1 is called with the same argument values. Simi-

larly, compilers can not recognize that f1 always returns 5. Then,

compilers should do code generation and optimization just like

when the expressions evaluate to di�erent values, thus our restric-

tion does not severely impair the quality of the test programs. Of

course, with a certain probability, all the variables in a expression

happen to be non-volatile. In that case, compilers may attempt op-

timization making full use of this fact. This means that our tests

have also chances to test if such optimization results in correct

codes.

In lines 6–7, it is checked if the the values of the arguments are

correct, which was di�cult in di�erential testing method.

3.2.3 While Statements. In order to make the value of the variable

unique, we only generate while statements whose iteration count

is 0 or 1.

Figure 9 (a) shows how a while statement of no iteration is gen-

erated. It starts from a while statement whose loop condition is

constant 0. The constant is expanded into an expression and state-

ments are recursively generated in the loop body. Arbitrary com-

bination of nesting of while loops as well as for loops and if state-

ments are possible. A while statement of a single iteration is gen-

erated from the template in (b), where the loop condition is 1 and

the break condition is 1.

If volatile variables are contained in the loop condition or the

break condition, compilers can not tell howmany times the loop is

iterated. Since they have no choice but to generate codes for gen-

eral cases, this limitation does not severely degenerate the quality

of the test.
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1: int f1 ( unsigned short a1, long a2 ){
2: t1 = -235;
3: t2 = 0;
4: ...
5: t99 = 234;
6: if( a1 == 5 ){OK();} else{NG();}
7: if( a2 == 9 ){OK();} else{NG();}
8: return 5;
9: }
10: int main(void){
11: int x1 = 34;
12: ...
13: int t3 = ((x2 + f1(5,9)) & x8) % t2;

14: int t4 = (t3 < x7) >> f1(5,9) / x5;

15: ...

↓
1: int f1 ( unsigned short a1, long a2 ){
2: t1 = ((x23 * a1) >> x2 & x8);
3: t2 = (t1 | x5);
4: ...
5: t99 = (x15 * x2) - (x10 - a1);
6: if( a1 == 5 ){OK();} else{NG();}
7: if( a2 == 9 ){OK();} else{NG();}
8: return (a1 - x3) * (t7 << (x3 / t11));

9: }
10: int main(void){
11: int x1 = 34;
12: ...
13: int t3 = ((x2 + f1((x2*x7), (x1-x5))) & x8) % t2;

14: int t4 = (t3 < x7) >> f1((t3/x9), (x8-x7)) / x5;

15: ...

Figure 8: Function de�nition and calls

while( 0 ) {
<statements>

}
→

while( ((x3<<t7)&(a8%x5)) ) {
<statements>

}

(a)While loop of no iteration

while( 1 ) {
<statements>
if ( 1 ) {break;}

}

→
while( (t2*x4)!=(x1>>x10) ) {
<statements>
if ( (a1-x11)-(x2/t5) ) {break;}

}

(b)While loop of a single iteration

Figure 9: Generation of while statement

switch ( 4 ) {

case 3:

<statements>

break;

case 4:

<statements>

break;

default:

<statements>

break;

}

→

switch ( (t2*x4)!=(x1>>x10) ) {

case (a0-x13)-(x21/t3):

<statements>

break;

case (x3-a3)*(t6*x12):

<statements>

break;

default:

<statements>

break;

}

Figure 10: Generation of switch statement

3.2.4 Switch Statements. Figure 10 shows how a switch statement

is generated in our method. At �rst, a set of case labels ({2,9,13} in

this example) is randomly generated, one of which (13) is used for

the default clause. Then one of them is chosen randomly as the

value of the switch expression. A prototype of a switch statement

is generated, as on the left side of the �gure, and then the constants

are expanded into expressions.

3.3 Minimization

The minimization of error programs can be realized by adding re-

duction rules regarding the control sentences and the data types in-

troduced in this paper. For example, with respect to function calls,

new rules include substitution of a function call with its return

1: int t0[3] = {0, 1, 2};

2: x0 = 5;
3: int main(void)
4: {
5: t1 = t0[0] + x0 + t0[1 * t0[1]];

6: if (t1 == 6) {OK();} else {NG();}
7: }

↓
1: int t0_0 = 0; int t0_1 = 1;
2: x0 = 5;
3: int main(void)
4: {
5: t1 = t0_0 + x0 + t0_1;

6: if (t1 == 6) {OK();} else {NG();}
7: }

Figure 11: Minimization on array variables

Table 1: Comparison with Csmith

Csmith Orange4 (“
√
*”: new features introduced in this paper)

if
√ √

for
√ √

+ General expressions for loop bounds

− Same values assigned to variables every iteration

function
√ √

* + Argument values are checked

while –
√
* − Only 0 or 1 iteration

switch –
√
*

goto
√

–

array
√ √

* + Complex expression in subscripts

+ Variable-length arrays

structure
√ √

* +Member of structures may be arrays of structures

bit �eld
√

–

pointer
√

–

value, deletion of the de�nition of a function that are not called at

all. As for the while statements, examples of transformations are

removal of a while loop whose body is empty, deletion of all the

statements in the body of a loop whose iteration condition is 0, re-

placing a while loop which iterates only once with the statements

in its body.

When an error program contains an array, a structure, or a union,

it is necessary to con�rm whether the error is really coming from

them. For this purpose, reduction of the elements of these com-

pound data types into �at scalar variables is attempted. Figure 11

shows an example of minimizing array variables. An array variable

t0 is declared in line 1 and its elements are referenced in line 5. If

this program exhibits an error, the array elements are replaced by

scalar variables to see if the error vanishes. The same reduction is

also attempted on structures and unions.

4 IMPLEMENTATION AND EXPERIMENTAL

RESULTS

Orange4, a random test system for C compilers, is extended based

on the proposed method in this paper. It is written in Perl5 and

runs on Unix environment such as Ubuntu Linux, Cygwin, Mac

OSX, etc.

Table 1 is a summary of the C program constructs generated

by Csmith and Orange4 (where “
√
*” indicates new features intro-

duced in this paper). Csmith has still advantages in terms of syn-

tactic broadness, for it covers pointers and bit �elds, particularly.
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1: int a[2] = {0,1};
2: int x = 129;
3: int main (void)
4: {
5: volatile int v = 0;
6: int t = x;
7: for (int i=0; i < (1+v+v+v+v+v+v+v+v+a[a[0]]); i++) {
8: t = a[(signed char)(130-x)];
9: }
10: if (t != 1) __builtin_abort();
11: return 0;
12: }

The �nal value of t should be 1, but compiled with with -O3
option, the check in line 10 failed.

Figure 12: Minimized error program for GCC-8.0.0

1: #define INT_MAX 0x7FFFFFFF
2: char a[1][1] = { {1} };
3: int x = 0;
4: int y = -INT_MAX;
5: int main (void)
6: {
7: if (a[x][INT_MAX+y] != 1) __builtin_abort();
8: return 0;
9: }

With -O1 option, compilation failed with an error message
“linker command failed with exit code 1.”

Figure 13: Minimized error program for LLVM-6.0

Table 2: Time for random test

compiler
Csmith Orange4 (extended)

time [h] #error time [h] #error
GCC-4.4.7 46.4 5 54.5 25
GCC-4.5.4 30.2 1 56.7 30
GCC-4.6.4 31.3 0 56.4 10
GCC-4.7.3 35.6 0 62.1 10

#test: 100,000
Average size of test program: 15.3KB (Csmith), 8.9KB (Orange4)
CPU: Xeon (3.60GHz) with 16GB RAM

On the other hand, extended Orange4 is better in quality in some

constructs, especially in the array subscripts.

With the extension proposed in this paper, we have successfully

detected two new bugs in the latest version of GCC and LLVM,

for which Csmith and previous Orange4 can not generate the test

cases.

Figure 12 is an error program that detected a bug in GCC-8.0.0

(latest development version at the time of the experiment). The pro-

gram is a result of handminimization after automaticminimization

by Orange4. The for loop in lines 7–9 iterates just once and the ex-

pected value of t is 1, but with -O3 option the check in line 10 failed

(the observed value of t was 0). The error vanishes if either of the

references to the array elements in line 7 is replaced by that to a

scalar variable. The error was reported to the developer through

Bugzilla3 and the bug was �xed.

Figure 13 is a minimized error program for LLVM-6.0 (latest at

the time of the experiment). Compiling with -O1 option results in

a “linker command error” and compilation failed. To reproduce the

same error, reference to the 2-dimensional array with the expres-

sion in the second subscript was necessary. The error was reported

to the Bugzilla of LLVM4.

3https://gcc.gnu.org/bugzilla/show_bug.cgi?id=83580
4https://bugs.llvm.org/show_bug.cgi?id=35159

Table 3: Time for minimization

Error time [sec]
program C-Reduce Orange4

#01 328.2 6.7
#02 155.0 24.8
#03 990.6 15.7
#04 106.0 13.9
#05 254.3 31.3
#06 76.1 4.2
#07 1697.3 5.7
#08 3888.2 23.2
#09 1521.5 20.4
#10 106.8 4.5
#11 72.8 6.6

CPU: Xeon (3.60GHz) with 16GB RAM

Table 2 shows the time necessary for testing GCCs with 10,000

randomprograms. Time ismeasured onXeon (3.60GHz)with 16GB

RAM. The size of the random programswas targeted to about 1,000

lines both for Csmith and Orange4, but they �uctuated because of

the randomness. The average size of the test programs resulted

in 15.3KB for Csmith and 8.9KB for Orange4. Orange4 was slower

than Csmith but it took less than twice hours. Since the same se-

quences of test programs are generated in both Csmith and Or-

ange4, the di�erence in test hours seems to come from compilation

time. The columns “#error” show the numbers of detected errors

but these �gures are just for reference, for Csmith had already de-

tected many bugs in GCCs of version 4.3.x and 4.4.x which had

been �xed.

Table 3 lists the CPU time for minimizing the 11 error programs

detected by the proposedmethod onGCC-4.8.5. Orange4 completed

minimizationwithin aminutes for all the programs. C-Reduce took

more time because it is a general minimizer while Orange4 starts

from the error programs’ ASTs which are annotated with seman-

tic information; it can use the information to avoid transformation

that triggers unde�ned behavior.

5 CONCLUSION

We have proposed an extension of the equivalent transformation

based random program generation method for automated testing

of C compilers. This extension enables generation of test programs

with while and switch statements and array accesses with complex

expressions, which have not been done by the existing methods.

With this feature, extended Orange4 have detected bugs in the lat-

est version of GCC and LLVM.

We are now still working on the extension of Orange4 to �ll the

gap between Orange4 and Csmith. Besides validation test of com-

pilers, we are also interested in performance test of compilers [4, 6]

and we are planning to apply extended Orange4 to performance

test. It is also a future work to develop random test generator for

other languages than C, such as Java. It is relatively easy to gen-

erate Java codes from ASTs of Orange4, but we think the current

framework of Orange4 is insu�cient for covering broad language

constructs of Java such as a class, inheritance, etc.

Orange4 is available on GitHub since December 22, 2016 5.

5https://github.com/ishiura-compiler/Orange4
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