
Synthesis of Full Hardware Implementation of
RTOS-Based Systems

Yuuki OOSAKO Nagisa ISHIURA
School of Science and Technology

Kwansei Gakuin University
Sanda, Hyogo, Japan

Hiroyuki TOMIYAMA
College of Science and Engineering

Ritsumeikan University
Kusatsu, Shiga, Japan

Hiroyuki KANBARA
ASTEM RI Kyoto

Kyoto, Japan

Abstract—This paper presents a method of automatically
synthesizing a hardware design from a set of source codes
for a real-time system utilizing an RTOS. It generates a full
hardware implementation where all the tasks and handlers in
the system as well as all the necessary services provided by
the RTOS kernel are implemented as hardware. Every task and
handler is synthesized into an independent hardware module
so that it may run in parallel with the other tasks/handlers as
soon as it is ready. This leads to task switching with extremely
low overhead and reduced computation time both by parallel
and hardware execution. Moreover, this eliminates the necessity
of the task queue management; task scheduling is realized by
a relatively simple manager hardware which instructs each
task/handler to run or stall based on the values of its status
variables. Since most of the API calls from tasks/handlers are
reduced to reads/writes of these status variables, they can be
expanded inline into the tasks/handlers’ source codes which are
compiled into hardware designs by a high-level synthesizer. We
have implemented a prototype synthesis system which assume
the use of the TOPPERS/ASP3 real-time kernel. A hardware
implementation synthesized from a sample1.c code, bundled in
the TOPPERS/ASP3 release, took 23 cycles for waking up a
waiting task and only 1 cycle for activating an interrupt handler.

Index Terms—real-time systems, RTOS, system synthesis,
hardware accelerator, TOPPERS/ASP3, high-level synthesis

I. INTRODUCTION

Today embedded systems are used in broad range of do-
mains. Recent applications includes unmanned aerial vehicle,
autonomous cars, service robots, etc. A real-time operating
system (RTOS) is an indispensable component for building
such real-time systems, which helps microprocessors to per-
form multiple tasks within the stipulated time. As the systems
are deployed in more and more sophisticated and time-critical
applications, it is becoming a difficult task to ensure their real-
time performance.

One approach to enhancing response performance of RTOS-
based systems is to implement some or all functions of RTOS
in hardware. Literatures [1], [2], and [3] accelerated RTOS
schedulers with hardware support. There have been even
attempts to implement most of the functionalities of RTOS
in hardware [4], [5], [6]. However, in this approach, tasks and
handlers remain executed as software, which inevitably incurs
the overhead of processor’s task switching. Moreover, response

time may not be improved if the heavy loads on tasks are the
bottle neck.

On the other hand, with high-level synthesis technology
[12], the tasks and handlers are converted into dedicated
hardware which leads to considerable speed-up. Automated
system design methods were proposed in [7] and [8], where
selected tasks or handlers were synthesized into hardware,
but RTOS and some tasks remained as software executed on
a CPU. Literature [9] and [10] converted a whole system
including interrupt handlers into hardware, but they only dealt
with bare-metal systems without an RTOS.

In this paper, we attempt to solve this problem by imple-
menting both the RTOS functionalities and tasks/handlers into
hardware. Unlike the existing RTOS acceleration methods, we
get rid of scheduling queues in our method. All the tasks and
handlers are implemented as independent hardware modules
which may run as soon as they are ready. Then complex
scheduling mechanism is reduced to a simple controller which
allows/holds the execution of the tasks/handlers.

Our prototype system takes a set of C source codes im-
plementing a real-time system using the TOPPERS/ASP3
kernel and automatically generates Verilog HDL codes. In a
preliminary experiment, the generated hardware took 23 cycles
for waking up a waiting task and only 1 cycle for activating
an interrupt handler.

II. REAL-TIME OPERATING SYSTEM

An RTOS (Real-Time Operating System) runs multiple
sequential programs concurrently on a single or multiple
CPUs. We refer each sequential entity a task. The task is
initially inactive and becomes ready when certain activating
conditions are met. Among the ready tasks, one of them is
executed and the others are waiting for their turns. The RTOS
scheduler is in charge of the choice. In real-time systems, the
deadline is defined to each task and the computation of the task
must be finished by the deadline. RTOSs are equipped with
mechanisms to realize this. One of them is task prioritization,
where a priority is set to each task and the task with the highest
priority is executed. Depending on the policy of the RTOS,
priority may be dynamically updated. A handler is a routine
invoked to deal with events. While a cyclic handler is activated
at a specified regular interval, an alarm handler is activated at
a specified time. An interrupt handler is a routine invoked by978-1-5386-7557-1/18/$31.00 c⃝2018 IEEE

1



DMEM

CPU

RTOS

TSK TSK TSK TSK

DMEM

TSK TSK TSK TSK

arbiter

IMEM

HW

manager

CYC CYC ALM INT

CYC CYC ALM INT

Fig. 1. Full Hardware Implementation of RTOS-Based Systems

a triggering signal or event. Usually, those handlers run in a
higher priority than tasks. RTOSs provides many services other
than task scheduling, such as mutual exclusion and inter-task
communication.

When designing real-time systems, we must pay attention
to the delays caused by the following factors:

1) Scheduling overhead, incurred by moving new and pre-
empted tasks between the queues and selecting a job to
execute.

2) Context switching overhead, incurred by saving the
context (the contents of some registers) of the running
task/handler, loading the context of the next task/handler,
and resuming execution.

3) Waiting for CPU availability, where a ready task may
have to wait for another task/handler with equal or
higher priority in the running state to finish their ex-
ecution.

Hardware schedulers [1], [2], [3] or hardware RTOS [4],
[5], [6] can reduce the delay from the first factor, but not
those from the second and the third. Some hardware support
on the processor side is needed to reduce the overhead from
context switching. Some parallel features are needed also on
the processor side to eliminate the third overhead.

III. FULL HARDWARE IMPLEMENTATION OF RTOS-BASED
SYSTEMS

A. Overview

We propose in this paper a method of synthesizing full
hardware implementation of real-time systems. Given a set
of source codes of a system that runs on top of an RTOS,
hardware implementation (in HDL) is auto-generated which
is functionally equivalent to the system running on a CPU.

Fig. 1 illustrates the concept and a rough sketch of the
resulting hardware configuration. The original system is de-
signed to run on a CPU where binary codes of multiple tasks

local

mem

arbiter

data
addr

pri

.
.
.

manager

task

status

data
addr

TSK1data
addr

stall, reset

data
addr

pri task

status

TSKndata
addr

stall, reset

data
addr

pri cyclic

status

CYCidata
addr

stall, reset

data
addr

pri alarm

status

ALMidata
addr

stall, reset

data
addr

pri int

status

INTidata
addr

stall, reset

IRQ

local

mem
data
addr

local

mem
data
addr

local

mem
data
addr

local

mem
data
addr

end

end

end

global

status
global

mem
data
addr mutex

mutex

Fig. 2. Detailed configuration of synthesized hardware

(TSK), cyclic/alarm/interrupt handlers (CYC, ALM, INT), and
an RTOS are stored in the instruction memory (IMEM). We
assume that all the tasks/handlers are created statically at
compile time rather than dynamically at run time. Then, our
system converts IMEM and CPU into equivalent hardware
(HW). Every task and handler is synthesized into an indepen-
dent hardware module. We assume that task/handler modules
which are in ready states may run in parallel regardless of
their priorities, then a typical scheduler and waiting queues are
eliminated. Instead, a manager module controls the run/stall
of the task/handler modules. Since multiple accesses from the
modules may come to the data memory (DMEM) at the same
time, they are arbitrated by an arbiter module. The priorities
of the tasks/handlers are reflected in this arbitration.

In this paper, we assume that mutual exclusion is well
implemented in the original software version on an assumption
that multiple tasks/handlers might run in parallel. Namely, a
source code where mutual exclusion is implemented assuming
that only one task/handler is running at any point of time is
out of the scope of our method.

B. Hardware Configuration

Fig. 2 shows a detailed hardware configuration synthesized
by our method. TSKi, CYCi, ALMi, and INTi are mod-

2



ules for a task, a cyclic handler, an alarm handler, and an
interrupt handler, respectively. The manager module controls
the tasks/handlers and the arbiter module arbitrates memory
accesses.

Each task/handler has a stall input. When stall==1, the clock
is suppressed within the task/handler. Thus the task/handler
runs when stall==0, and stops when stall==1. Besides, each
handler as a reset input which is used to restart the handler.
When reset==1, the task returns to its initial state.

The manager determines the value of the stall and reset
inputs based on the values of the registers to store the status
of each task/handler (task status, cyclic status, alarm status,
and int status in the figure). The status registers include the
current status, the current priority, the waiting factor of the
task/handler, for example. In the case of a cyclic and alarm
handler, the remaining time until time-out is also included.
When a task is in an inactive state, for example, the stall
signal is set to 1, and as soon as it goes into a running state,
the stall signal is cleared to 0.

The status registers are placed in the memory space. When
a task/handler requests a memory access with an address, the
status register is read/written if the register is mapped to the
address, otherwise the request is forwarded to the memory
through the arbiter. Most of the service calls are implemented
as sequences of reads/writes of the status variables.

The cyclic and alarm handlers do not use external timers
but have their own clock counters as part of their status
registers. The counters are decremented at every clock and
the handlers are activated (the stall signals are reset) when the
counters become zero. As for interrupt handling, the manager
watches the external interrupt signal (IRQ) and updates the
status registers of the interrupt handlers, which activates the
handlers.

Since all the ready tasks and handlers may run in paral-
lel, multiple access may occur simultaneously on the same
memory bank. The arbiter arbitrates the memory accesses.
The arbitration is done based on the priorities of the tasks
and handlers. Namely, only the memory access from the
task/handler of the highest priority is granted and the stall
signals are sent back to the other tasks/handlers.

Another concern regarding parallel execution of
tasks/handlers is simultaneous occurrences of service calls,
which may cause conflicting or inconsistent updates on status
registers. To avoid this, the manager allows only one system
call at a time; if there are multiple calls simultaneously, only
one of them is processed first and the others are deferred.
This serialization is realized using a mutex.

The mutex is also implemented in hardware. If there
are multiple lock requests from tasks/handlers, only one of
them is granted, and stall signals are sent back to the other
tasks/handlers.

IV. DETAILS OF THE METHOD BASED ON TOPPERS/ASP3
This section describes the details of the proposed method,

based on the TOPPERS/ASP3 kernel1 as an example.
1https://www.toppers.jp/en/asp-kernel.html

TABLE I
STATES OF TASK IN TOPPERS/ASP3

State Meaning
Dormant The task is not active, or its processing has ended
Ready The task is ready and waiting for the CPU
Running The task is being executed
Waiting The task is suspended because some condition is

not satisfied
Suspended The task is forcibly suspended
Waiting-suspended The task is both waiting and suspended

TABLE II
SERVICE CALLS FOR EXECUTION CONTROL AND MUTUAL EXCLUSION

(a) Task control
Service call Function
act tsk(ID tskid) Moves the task from the dormant state to the

ready state
slp tsk() Moves the invoking task to the waiting state
tslp tsk(TMO timeout) Same as slp tsk() but with time-out
wup tsk(ID tskid) Cancels the waiting state of the task
rel wai(ID tskid) Forcibly cancels the WAITING state of the

task
sus tsk(ID tskid) Moves the task from the running state or

ready state to the suspended state, or from
the waiting state to the waiting-suspended
state

rsm tsk(ID tskid) Moves the task from the suspended state
to the ready state, or from the waiting-
suspended state to the waiting state

dly tsk(RELTIM time) Moves the invoking task to the waiting state
for the specified time

ext tsk() Moves the invoking task from the running
state to the dormant state

ras ter(ID tskid) Moves the task to the dormant state
ter tsk(ID tskid) Forcibly moves the task to the dormant state

(b) Handler control
Service call Function
sta cyc(ID cycid) Moves the cyclic handler from the non-

operational state to the operational state
stp cyc(ID cycid) Moves the cyclic handler from the opera-

tional state to the non-operational state
sta alm(ID almid,
RELTIM almtim)

Sets the activation time of the alarm handler
and moves the alarm handler from the non-
operational state to the operational state

stp alm(ID almid) Moves the alarm handler from the opera-
tional state to the non-operational state

(c) Mutual exclusion
Service call Function
loc mtx(ID mtxid) Acquire the mutex
unl mtx(ID mtxid) Release the mutex

TOPPERS/ASP3 is the third generation real-time kernel
developed in the TOPPERS project2 based on µITRON4.0
specification [11].

The tasks are created statically at system compilation time.
In the terminology of the TOPPERS kernel, a task is in one of
the six states in TABLE I. The tasks are initially in the dormant
state and become ready when conditions are met. The ready
tasks are managed in queues and selected one is moved to the
running state to be executed. The tasks may move or be forced
to the waiting or the suspended (or even both) states. All the

2http://www.toppers.jp

3



TABLE III
VARIABLES TO EXPRESS TASK STATUS

Variable Meaning
tskstat Current status
tskpri Current priority
tskbpri Base priority
tskwait Wait factor
wobjid Waiting object ID
lefttmo Remaining time until time-out
actcnt Activation request count
wupcnt Wake-up request count
raster Termination request is raised
dister Termination is disabled

tasks share a single memory space. The size and the starting
address of the stack for each task/handlers are specified in a
configuration file. TABLE II lists major service calls regarding
the control of tasks and handlers. For example, in the first row,
the act tsk call with a task ID moves the task from the dormant
state to the ready state.

A. Tasks

The stall signal to a task is set to 0 only when the task is in
a running state. Otherwise (when it is either dormant, ready,
waiting, suspended, waiting-suspended) the stall signal is set
to 1. In addition, the stall signal is also set to 1 when requests
for memory access or mutex lock from the task is deferred.

Since all the ready tasks may be executed in parallel, the
tasks in the ready state immediately moves to the running
state, so long as dispatch is not prohibited. This pseudo-
scheduling is handled by the manager module; when some
task become ready and the dispatch is not disabled, then the
manager updates the state of the task from ready to running
and clears the stall signal at the next clock cycle.

A running task ends its execution by calling ext tsk. This
moves the task into the dormant state. On notifying this, the
manager sets reset = 1 and stall = 1 to bring the task to the
initial state.

The status of each task is kept in task status registers in the
manager module. In the ASP3 kernel the object to represent
a task (in terms of the C struct) has 10 members listed in
TABLE III, and we provide exactly 10 registers corresponding
to the members. The status registers are mapped in the memory
space and are accessed by load/store operations from the
task modules. Besides of the task objects, some global status
variables are also used to control the execution of the task
modules. They store the interrupt prohibition flag, the interrupt
mask, the dispatch prohibition flag, and the CPU lock flag.

Most of the service calls of the ASP3 kernel are imple-
mented by a sequence of reads and updates of the task object
members. This means that the original C code for the service
call can be used almost as it is to generate task modules by
high-level synthesis. For example, Fig. 3 is the C code to
implement the act tsk call (which moves the task from the
dormant state to the ready state). The only modification from
the original code is in lines 11 and 21. These calls are for
acquisition and release of the mutex to serialize service calls.

1: ER act_tsk(ID tskid) {
2:
3: if (IS_TASK_CONTEXT && tskid == TSK_SELF) {
4: tskid = TOPPERS_HW_SELF_ID;
5: }
6:
7: if (tskid <= 0 || TNUM_TSKID < tskid) {return E_ID;}
8: volatile T_RTSK *target =
9: &(task_status[tskid-1].rtsk);
10:
11: _loc_service_call();
12:
13: uint_t actcnt = target->actcnt;
14:
15: ER rc = E_OK;
16: if (glob_status.f_cpu_locked) {rc = E_CTX;}
17: else if (actcnt >= TMAX_ACTCNT) {rc = E_QOVR;}
18: else if (target->tskstat != TTS_DMT) {rc = E_QOVR;}
19: else {target->tskstat = TTS_RDY;}
20:
21: _unl_service_call();
22:
23: return rc;
24: }

Fig. 3. C Implementation of act tsk

For the sake of efficiency, the body of this function is inline
expanded into the tasks C code and then put into a high-level
synthesizer.

B. Handlers

Cyclic and alarm handlers are dealt with basically in the
same way as in the tasks; the manager controls the stall signals
to the handlers based on the values of the status registers
for the handlers. On the other hand, the handler notifies the
completion by setting end signal to 1.

In the case of the cyclic handler, the manager holds two
member variables per handler; cycstat represents the status of
the handler (like tskstat of a task) where cycstat==1 means
it is running and cycstat==0 means it is dormant; lefttim is
a timer variable to keep the remaining time until the next
activation (in millisecond). The cycle time is written into the
timer variable when the handler is started and is decremented
at each millisecond. Associated with the timer variable, the
manager has a sub-counter variable that keeps the fraction of
a millisecond in terms of the clock period; it is decremented
at each clock cycle to measure a millisecond. When the value
of the cycle timer becomes 0, the stall signal to the handler is
set to 0, and the cycle time is set again to the timer variable.

The detailed flow of cyclic handler execution is as follows.
The manager uses an auxiliary variable f reset in addition
to cycstat and lefttim, by which a request to start the cyclic
handler is notified to the manager.

1) (task) calls sta cyc(). This call sets f reset = 1 and
cycstat = 1.

2) (manager) if f reset==1, then sets the cycle time to
lefttim, and sets f reset==0.

3) (manager) decrements lefttim at each millisecond.
4) (manager) if lefttim==0, then sets cycstat = 1 and stall

= 0 to run the handler and re-sets cycle time to lefttim.
5) (handler) when the final state is reached, emits end = 1.

4



6) (manager) if end==1, then sets stall = 1 and reset = 1
to force the handler to the initial state (this sets cycstat
= 0 and stall = 1).

7) (manager) sets reset = 0 and goto 3.
The alarm handler works in almost the same way as the

cyclic handler. The difference is that the alarm handler is not
repeatedly executed. Thus, the manager does not have to re-set
variable lefttim.

The interrupt handler is also controlled by the same mech-
anism as the other types of handlers. When an interrupt is
raised on the IRQ port, the stall signal is set to 0 to activate the
handler, provided the interrupt is not prohibited at the point.

In the model of TOPPERS, interrupts are grouped in terms
of lines; multiple devices of the same types are connected to
a single line. When an interrupt is raised from one of the
devices on a line, the interrupt service routines (ISRs) for all
the devices on the line are executed sequentially. A priority
is defined to each line, which may be changed dynamically,
and the prohibition flag and the priority mask are provided to
each line.

In our scheme, one interrupt handler module is generated
per line, which includes hardware to execute the service
routines of all the devices on the line.

When an interrupt is raised on a line, the manager checks
the following conditions:

• The CPU lock flag is clear.
• The interrupt lock flag is clear.
• The interrupt request prohibition flag of the line is clear.
• The interrupt priority of the line is higher than the

interrupt mask of the line.
If all the conditions are met, the manager sets a register exec
representing the state of the handler to 1, which turns stall = 0
and the handler is run. The handler notifies its completion to
the manager by setting end = 1. Then the manager sets reset
= 1, which turns exec = 0 and stall = 1.

C. Mutex

We designed a hardware mutex module to provide the
function of the mutex. If multiple locks are requested simulta-
neously from tasks/handlers, just one of them is granted, and
stall signals are set to 1 for all the other tasks/handlers.

The detailed flow of handling the mutex is as follows. A
task/handler calls loc mtx to request for a mutex. The mutex
is successfully acquired if member variable acquired of the
mutex object is 1.

1) (task/handler i) calls loc mtx.
2) (manager) sets the i-th request port of the mutex module

LCKi to 1.
3) (mutex) sets the i-th acknowledge port ACQi to 1. If

there are multiple requests on the same clock cycle, the
smallest i where LCKi==1 is chosen.

4) (manager) stalls the j-th task where LCKj==1 and
ACQj==0.

5) (manager) returns the value of LCKi for a read access to
the member variable acquired from the i-th task/handler.

ACAP

lib/*.c

../include/*.h

../target/dummy_gcc/*.h

../arch/gcc/*.h

../kernel/*.h

../syssvc/*.h

TSKi.v CYCi.v ALMi.v INTi.vtop.v manager.v arbiter.v mutex.v

PROG1.cPROG.cfg

configurator

kernel_cfg.h kernel_cfg.h TSKi_m.c CYCi_m.c ALMi_m.c INTi_m.c

PROGk.c...

Fig. 4. Flow of system synthesis

6) (task/handler i) if acquired==1, then enters the critical
section.

D. Flow of Synthesis

The tasks and handlers are compiled into register transfer
level hardware by high-level synthesis, while the manager and
the arbiter with the necessary number of ports are generated
by a script. All the other modules such as mutex units are
manually designed. The number of the tasks/handlers and
necessary mutexes are defined in the configuration file, so it
is extracted from the file.

V. PRELIMINARY RESULT

A. Implementation

A prototype synthesis system based on the proposed method
has been implemented in Perl5 utilizing a high-level synthe-
sizer ACAP [13].

ACAP synthesizes RTL hardware design in Verilog HDL
from C programs via MIPS binaries. Namely, given C pro-
grams are compiled and linked into a binary executable file by
GCC, from which a CDFG (control dataflow graph), a popular
data structure for high-level synthesis, is constructed. With this
scheme, ACAP can synthesize original C codes of tasks and
handlers into hardware almost with no changes. Modern high-
level synthesizer such as Vivado HLS3 may be used instead,
with a little modification on the source codes.

The flow of synthesis in the implemented system is shown
in Fig. 4. The names and initial settings (such as the base prior-
ities) of the tasks/handlers are extracted from the configuration
file PROG.cfg, and definition files kernel cfg.c, kernel cfg.h
and the files containing main routines for tasks/handlers (such
as TASKi m.c)4 are generated. Those main files are compiled
with the body of the functions composed in PROG1.c, · · ·,

3https://www.xilinx.com/products/design-tools/vivado.html
4ACAP requires one main function per one hardware module.

5



TABLE IV
SYNTHESIS RESULT FOR sample1.

(a) Cycles and latency
service call #cycle latency [ns]
act tsk 23 301.3
wup tsk 28 366.7
ext tsk 12 157.2
ras ter 26 340.5
ter tsk 23 301.3
slp tsk 16 209.6
loc mtx 25 327.5
unl mtx 10 131.0
sta cyc 19 248.9
sta alm 20 262.0
interrupt 1 13.1

(b) Hardware size
module #LUT #FF

top 96 1
manager 5,305 3,027
arbiter 573 10
mutex0 29 16
mutex1 29 16
MAIN TASK 5,382 632
EXC TASK 4,703 399
TASK1 5,320 950
TASK2 6,620 649
TASK3 6,258 649
ALMHDR1 8,252 850
CLCHDR1 6,714 852
INTNO1 5,669 639
total 54,950 8,689

High-level synthesizer: ACAP (2016.10)
Logic synthesizer: Xilinx Vivado (2016.4)
Target: Xilinx Artix-7 (xc7a100tcsg324-3)

PROGk.c which are compiled by ACAP into hardware designs
in Verilog HDL. At the same time, Verilog HDL design for the
manager and the arbiter with the necessary number of ports,
and the necessary number of the mutexes are generated.

At this point, we have implemented 38 out of 178 service
calls of the TOPPERS/ASP3.

B. Synthesis Results

A hardware model is synthesized from sample1.c code bun-
dled in the TOPPERS/ASP3 release. It consists of MAIN TSK
which controls the entire system, EXC TASK which handles
the CPU exception, three concurrent tasks TASK1, TASK2,
TASK3, cyclic, alarm, and interrupt handlers ALMHDR1,
CLCHDR1, INTNO1. The main task receives character data
from a serial port that work for commands to the system,
which can test the following 22 service calls:

act tsk, can act, ter tsk, chg pri, chg pri, chg pri,
get pri, wup tsk, can wup, rel wai, sus tsk, rsm tsk,
ras ter, rot rdq, rot rdq, rot rdq, sta cyc, stp cyc,
sta alm, stp alm, loc cpu, and unl cpu.

The tasks do no particular processing but just write data into
the memory to indicate that they are running. The cyclic,
alarm, and interrupt handlers rotates the ready queue of the
highest priority to allocate CPU time to the the highest priority

tasks. EXC TASK terminates the system by calling a service
call ext ker, after outputting a log.

The generated Verilog codes are synthesized by Xil-
inx Vivado (2016.4), targeting a Xilinx FPGA Artix-7
(xc7a100tcsg324-3).

TABLE IV (a) shows the response performance of the
synthesized hardware in terms of the clock cycles and the
latency it took from the point where service call is made until
the status update is completed. For example, the first row
(act tsk) indicates that it took 23 cycles to move the target
task from the dormant state to the ready state (it needs one
extra cycle to move the task to the running state). The update
of the state alone needs just 2 cycles; the other 21 cycles were
spend for error checking (validity of the task id, etc.) and for
acquiring/releasing the mutex for service call serialization. The
latency is the product of the cycles and the critical path delay
of the circuit which was 13.098ns. All the service calls were
processed less than a half micro second. Especially, activation
of interrupt handler took just 1 cycle.

TABLE IV (a) (b) lists the size of each module in terms
of the numbers of look-up tables (#LUT) and flip-flops (#FF).
For reference, a MIPS R3000 compatible processor core takes
about 3,200 LUTs. The sizes of top through mutex1 may be
reasonable but those of TASK1 through INTNO1 are little too
large. There seems to be a lot of room for optimizing the
hardware, which we would like to work on.

VI. CONCLUSION

We have presented a method of synthesizing full hardware
implementation of real-time systems using an RTOS. The
synthesized hardware is able to achieve very quick response.

Currently, the size of the synthesized hardware is little too
large. We are now working on reduction of the redundancy of
the input source codes for high-level synthesis and optimiza-
tion of the generated hardware. We are also considering the
use of commercially available high-level synthesizers.

Another issue is how to apply our method to source codes
that implement mutual exclusion using the fact that only one
task/handler is running at any point of time. One idea to solve
this problem is to provide an execution mode in which only
the tasks/handlers of the highest priority are executed, or only
one task/handler may run at the same time.

We are now also working on implementing other necessary
service calls of TOPPERS/ASP3 regarding event flags, data
queues, message buffers, etc. We are also planning to investi-
gate the applicability of our method to other RTOSs such as
FreeRTOS5.

Acknowledgment: We would like to thank to Mr. Takayuki
Nakatani who was with Ritsumeikan University, Mr. Masaharu
Yano who was with Kyoto University, Mr. Shimpei Tamura
who was with Kwansei Gakuin University and all the members
of Ishiura Lab. of Kwansei Gakuin University for their discus-
sion and advice on this research. This work has been partly
supported by JSPS KAKENHI under Grant Nos. 16K00088,
16K01207, and 15H02680.

5https://www.freertos.org

6



REFERENCES

[1] Youngchul Cho, Sungjoo Yoo, Kiyoung Choi, Nacer-Eddine Zergainoh,
and Ahmed A. Jerraya: “Scheduler implementation in MPSoC design,” in
Proc. Asia and South Pacific Design Automation Conference (ASP-DAC
2005), pp. 151–156 (Jan. 2005) DOI:http//doi.org/10.1109/ASPDAC.
2005.1466148

[2] Melissa Vetromille, Luciano Ost, Csar A. M. Marcon, Carlos Reif,
and Fabiano Hessel: “RTOS scheduler implementation in hardware and
software for real time applications,” in Proc. International Workshop
on Rapid System Prototyping (RSP ’06) pp. 163–168 (June 2006).
DOI:http//doi.org/10.1109/RSP.2006.34

[3] Paul Kohout, Brinda Ganesh, and Bruce Jacob: “Hardware support
for real-time operating systems,” in Proc. International Conference on
Hardware/Software Codesign and System Synthesis (CODES+ISSS ’03),
pp. 45–51 (Oct. 2003). DOI:http//doi.org/10.1145/944645.944656

[4] Takumi Nakano, Yoshiki Komatsudaira, Akichika Shiomi, and Masaharu
Imai: “Performance evaluation of STRON: A hardware implementation
of a real-time OS,” in IEICE Trans. Fundamentals, vol. E82-A, no. 11
pp. 2375–2382 (Nov. 1999). DOI:http//doi.org/

[5] Naotaka Maruyama, Tohru Ishihara, and Hiroto Yasuura: “An RTOS
in hardware for energy efficient software-based TCP/IP processing,” in
Proc. IEEE Symposium on Application Specific Processors (SASP 2010),
pp. 58–63 (June 2010).

[6] Carl Stenquist: “HW-RTOS—Improved RTOS performance by
implementation in silicon,” White Paper—Renesas R-IN32M3
Industrial Network ASSP (May 2014). Available at available at
https://www.renesas.com/en-us/media/support/partners/r-in-consortium/
technology/R-IN32 HWRTOS Whitepaper 5 20 14.pdf (accessed
2018-06-11).

[7] Seiya Shibata, Shinya Honda, Hiroyuki Tomiyama, and Hiroaki Takada:
“Advanced system-builder: A tool set for multiprocessor design space ex-
ploration,” in Proc. International SoC Design Conference (ISOCC 2010),
pp. 79–82 (Nov. 2010). DOI:http//doi.org/10.1109/SOCDC.2010.5682967

[8] Yuki Ando, Shinya Honda, Hiroaki Takada, Masato Edahiro: “System-
level design method for control systems with hardware-implemented
interrupt handler,” IPSJ Journal of Information Processing, vol. 23, no. 5,
pp. 532–541 (Sept. 2015). DOI:http//doi.org/10.2197/ipsjjip.23.532

[9] Naoya Ito, Nagisa Ishiura, Hiroyuki Tomiyama, and Hiroyuki Kanbara:
“High-level synthesis from programs with external interrupt handling,” in
Proc. Workshop on Synthesis And System Integration of Mixed Informa-
tion Technologies (SASIMI 2015), 10–15 (March 2015).

[10] Naoya Ito, Yuuki Oosako, Nagisa Ishiura, and Hiroyuki Tomiyama,
and Hiroyuki Kanbara: “Binary synthesis implementing external inter-
rupt handler as independent module,” in Proc. International Symposium
on Rapid System Prototyping (RSP 2017), pp. 92–98 (Oct. 2017).
DOI:http//doi.org/10.1145/3130265.3130317

[11] ITRON Committee, TRON association: µITRON4.0 Specification (1999,
2002). Available at http://www.ertl.jp/ITRON/SPEC/FILE/mitron-400e.
pdf (accessed 2018-06-11).

[12] Daniel D. Gajski, Nikil D. Dutt, Allen C-H Wu, and Steve Y-L Lin:
High-Level Synthesis: Introduction to Chip and System Design, Kluwer
Academic Publishers (1992).

[13] Nagisa Ishiura, Hiroyuki Kanbara, and Hiroyuki Tomiyama: “ACAP:
Binary Synthesizer Based on MIPS Object Codes,” in Proc. ITC-CSCC
2014, pp. 725–728 (July 2014).

7


