
High-Level Synthesis of Side Channel Attack Resistant RSA Decryption Circuit

Naoki OSAKO Sayuri OTA Suguru YURA† Nagisa ISHIURA
School of Science and Technology, Kwansei Gakuin University

2-1 Gakuen, Sanda, Hyogo, 669–1337, Japan

Abstract—This paper presents a side channel attack resistant
design of an RSA decryption circuit using high-level synthesis.
An RSA encoder/decoder can be designed by high-level synthe-
sis utilizing the GNU GMP library. With this methodology, an
RSA decryption circuit is synthesized based on the Fournaris’s
algorithm which was designed against power analysis attacks and
fault injection attacks. In order to reduce computation time and
hardware size, Montgomery modular multiplication and paral-
lelization of CRT-based modular exponentiation are applied. Re-
sults of synthesis targeting Xilinx Kintex-7 FPGA shows that the
attack resistance has been implemented with the 1.94 times LUT
count and 5.17 times execution cycles.

I. Introduction
The “Internet of Things (IoT)” is becoming an integral part

of our daily life and explosively increasing number of devices
are being connected to the Internet. To safeguard information
across those devices, encryption technologies efficient both in
hardware cost and power consumption are becoming impor-
tant.

Efficiency of common key block cryptosystems such as AES
(Advance Encryption Standard) may be drastically improved
by manually designing dedicated hardware with streamlined
architecture. On the other hand, public key cryptosystems such
the RSA (RivestShamirAdleman) and ECC (Elliptic-Curve
Cryptography) involve very long precision arithmetic which
tend to end up with memory centric architecture. In this case,
specialized hardware does not always exhibit overwhelming
efficiency over processor implementation. In spite of this low
return-of-investment, hardware implementation is still wanted
to reduce hardware cost and power consumption of the IoT de-
vices as much as possible. High-level synthesis is an attractive
option to implement such complex computation into memory
centric hardware.

Moreover, in the design of cryptosystem modules, extra
care must be paid against side channel attacks [2]. Depend-
ing on desired security levels, sophisticated algorithms must
be employed which hide power consumption changes associ-
ated with secret keys and do not emit significant information on
fault injection. This further increases required design efforts.

To address this issue, in this paper, a side channel attack
resistant RSA decryption circuit is designed by high-level syn-
thesis. A side channel attack resistant algorithm proposed by
Fournaris [1] is coded in the C language utilizing the GNU
multiple precision arithmetic library (GMP), and RTL design
is obtained using a high-level synthesizer ACAP [4]. In or-
der to make the implementation further efficient, Montgomery
reduction and parallelization on CRT-based modular exponen-

† Currently with Ministry of Defense, Kanagawa, Japan.

tiation are applied. Synthesis targeting Xilinx Kintex-7 FPGA
shows that attack resistance can be implemented at the cost of
1.94 times LUT count and 5.17 times execution cycles.

II. Protection against side channel attacks on RSA
cryptosystem

In the RSA cryptosystem, the ciphertext c of message m is
computed with public keys N and e according to:

c = me mod N (1)
where N = pq and p and q are prime numbers. Message m is
recovered from c using private key d by computing:

m = cd mod N (2)
The high computation cost of modular exponentiation in (2) is
often lessened utilizing the Chinese reminder theorem (CRT):

mp = cdp mod p, mq = cdq mod q (3)
m = mq(q−1 mod p)q + mp(p−1 mod q)p (4)

A standard way to compute (3) is to iterate modular multiplica-
tions over the bits of dp and dq, which leads to different power
consumption for different bit values. Moreover, changes on
the outputs caused by intentionally injected faults on particu-
lar signal lines may be exploited to infer the secret keys.

Fournaris’s algorithm [1] was designed to protect RSA de-
cryption against those side channel attacks. It had resistance
against the power analysis attacks as well as the fault injection
attacks known at the point of publication, including Bellcore
attack, KQ attack, and YLMH attack.

An outline of the algorithm is shown in Figure 1. The main
function DECRYPT receives c, N, p, q, secret keys (dp, dq, iq),
and a random mask b and its inverse b−1, to compute cd mod N.
Modular multiplication in equation (3) is computed by calling
FSCAME (lines 4–5), and the output is computed according to
the CRT (lines 6–9). Here, 4-tuple values instead of a single
values are computed, which are used to detect fault injection;
if fault injection is detected, error is returned not to leak the
information. Function FSCAME computes modular exponen-
tiation in encoded 4-tuple values. It is designed so that the
amount of computation is independent of the bit values in the
secret key d (lines 9–16). It also detects fault injection.

III. High-level synthesis of attack resistant RSA
decryption circuit

A. Overview
In this paper, the algorithm in Figure 1 is coded in the C

language to generate RTL design by high-level synthesis.
The GNU GMP library is used for multiple precision arith-

metic. It is rewritten for the use of high-level synthesis [3].
Dynamic allocation is eliminated and statically allocated ar-

R2-13 SASIMI 2018 Proceedings

- 159 -



1: Function DECRYPT
2: Input: c,N, p, q, dp, dq, iq, b, b−1

3: Output: cd mod N

4: (sp
0 , s

p
1 , s

p
2 , s

p
4 ) = FSCAME(c, b, b−1, dp, p);

5: (sq
0, s

q
1, s

q
2, s

q
4) = FSCAME(c, b, b−1, dq, q);

6: S 0 = sq
0 + q · ((sp

0 − sq
0) · iq mod p);

7: S 1 = sq
1 + q · ((sp

1 − sq
1) · iq mod p);

8: S 2 = sq
2 + q · ((sp

2 − sq
2) · iq mod p);

9: S 4 = sq
4 + q · ((sp

4 − sq
4) · iq mod p);

10: if (S 0 · S 1 mod N = S 2 and p, q not modified)
11: { return S 0 · S 4 mod N; } else { return error; }

(a) RSA decryption.

1: Function FSCAME
2: Input: c,M, d = (1, dt−2, ...d0), b, b−1

3: Output: (s0, s1, s2, s4)
4: / / s0 = be · ce mod M, s1 = bē+1 · cē+1 mod M
5: / / s2 = b2t · c2t

mod M, s4 = b−e mod M

6: R = 2n+2; T = R2 mod M; TR = T · c · R−1 mod M;
7: bR = b · R mod M; bR−1 = b−1 · R mod M;

8: s0 = s1 = bR; s2 = bR · TR · R−1 mod M; s3 = s4 = s5 = bR−1;
9: for (i = 0 to t − 1) {
10: if (di = 1) {
11: s0 = s0 · s2 · R−1 mod M; s4 = s4 · s3 · R−1 mod M;
12: } else {
13: s1 = s1 · s2 · R−1 mod M; = s5 = s5 · s3 · R−1 mod M;
14: }
15: s2 = s2

2 · R
−1 mod M; s3 = s2

3 · R
−1 mod M;

16: }
17: s0 = s0 · b−1 · R−1 mod M;
18: s1 = s1 · c · R−1 mod M;
19: s2 = s2 · 1 · R−1 mod M;
20: s4 = s4 · b · R−1 mod M;

21: if (i and d are not modified and
22: s0 · s1 · R−1 mod M = s2 · 1 · R−1 mod M)
23: { return (s0, s1, s2, s4); } else { return error; }

(b) Attack resistant Montgomery modular exponentiation

Fig. 1. Fournaris’s Algorithm [1].

rays are used. Once the maximum bit length of N is declared,
the C code can compute decryption for N smaller than that.
B. Montgomery modular multiplication

Montgomery modular multiplication is a technique to elimi-
nate division from modular multiplication. Let R be an integer
where R and N are mutually prime and R−1 be an integer sat-
isfying RR−1 = 1 mod N. Montgomery reduction is defined
as M(t) = tR−1 mod N. Let R2 = R2 mod N. Then, modular
multiplication z = xy mod N is replaced by:

X = M(xR2), Y = M(yR2),
Z = MR(XY)
z = MR(Z)

If we choose R to be an exponential of 2, all these computation
is performed only with multiplication, shift, and bit-wise and
operations. We apply this transformation to all the modular
multiplication in the algorithm to eliminate division.
C. Parallelization

There is no dependency between two modular exponentia-
tion, so the calls to FSCAME in lines 4–5 in Figure 1 (a) can be
computed in parallel. For this purpose, we synthesize another
hardware module that compute only FSCAME. Then, function
DECRYPT is modified so that it activates the FSCAME mod-

TABLE I
Synthesis Results.

design cycles #LUT freq. [MHz]
RSA (MIPS) 432,256 3,180 121.7
RSA 68,261 11,721 107.8
SRR (MIPS) 3,557,349 3,180 121.7
SRR 627,615 16,801 77.5
SRR+M 680,284 11,464 105.5
SRR+M+P 353,489 22,590 105.6

ule for computation of line 4 before calling (its own) FSCAME
in line 5, and collect the return values before proceeding to line
6. Since most computation time is spent in the FSCAME, sub-
stantial speed-up is expected by this parallelization.

IV. Synthesis Results
The C code was synthesized into a Verilog HDL code by

high-level synthesizer ACAP [4] and then mapped into FPGA
(kintex-7 xc7k70) by Xilinx Vivado (2016.4). High-level syn-
thesizer other than ACAP might also be used, but ACAP would
need less modification on the C code because it can synthesize
any C codes as long as their binaries can be executed on a bare-
metal MIPS.

The synthesis results are summarized in TABLE I. The C
code and the resulting circuits are independent of the num-
ber of bits for RSA decription, except for the size of arrays
to store intermediate results. In this experiment, the param-
eters were set so that up to 2048-bit RSA decription can be
executed. “Cycles” in the table indicate the number of cycles
for RSA decryption of 128-bit data.

V. Conclusion
This paper has described high-level synthesis of a side chan-

nel attack resistant design of an RSA decryption circuit. Eval-
uation of the attack resistance is the future work. Even if the
algorithm is resistant, high-level synthesizer might bring un-
expected variation exploited as side channels [5]. We consider
this an important topic to be investigated in details.
Acknowledgements—Authors would like to express their appreciation
to Dr. H. Kanbara (ASTEM/RI), Prof. H. Tomiyama (Ritsumeikan
Univ.), and Mr. T. Nakatani (formerly with Ritsumeikan Univ.) for
their valuable comments. We would also like to thank to the members
of Ishiura Lab. of Kwansei Gakuin Univ. for their cooperation. This
work was partly supported by JSPS KAKENHI Grant #16K00088.

References
[1] P. Fournaris, et al.: “Protecting CRT RSA against fault and

power side channel attacks,” in Proc. VLSI 2012, pp. 159–
164 (Aug. 2012).

[2] Vlastı́mil Klı́ma and Tomáš Rosa: “Further results and
considerations on side channel attacks on RSA,” in Proc.
CHES 2002, pp. 244–259 (Aug. 2002).

[3] N. Ito, et al.: “High Level synthesis from binary code
linked with multiple precision arithmetic library to RSA
encrypt/decrypt circuit,” (in Japanese) in Proc. Convention
of IPSJ Kansai Section, A-04 (Sept. 2015).

[4] N. Ishiura, H. Kanbara, and H. Tomiyama: “ACAP: Binary
synthesizer based on MIPS object codes,” in Proc. ITC-
CSCC 2014, pp. 725–728 (July 2014).

[5] S. Peter and T. Givargis: “Towards a timing attack aware
high-level synthesis of integrated circuits,” in Proc. ICCD,
pp. 452–455 (Nov. 2016).

- 160 -




