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ABSTRACT
This paper proposes a method of incorporating speculative exe-
cution into distributed control which enables e�cient dynamic
scheduling. In the presence of variable latency units, the static
scheduling scheme in conventional high-level synthesis causes
wasteful waits. Distributed control enables dynamic scheduling
which adjust the execution timing of the operations dynamically.
In this paper, we attempt to further enhance speed performance by
introducing speculative execution based on branch prediction into
distributed control. Experimental results on two examples showed
that the execution cycles were reduced by 11.1% to 21.9% when the
prediction hit rate was 75%.

CCS CONCEPTS
• Hardware → Hardware-software codesign; • Computer sys-
tems organization → Embedded hardware;
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1 INTRODUCTION
With recent progress in the integrated circuit technology, the scale
and the complexity of the hardware implemented in a chip are
growing rapidly. While such systems need enormous design e�orts,
there is a strong demand to reduce time to market. High-level
synthesis is one of the promising means to prototype hardware
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design from existing software assets on which many researches
have been conducted [1].

In conventional high-level synthesis methods, operations are
scheduled assuming that functional units take the same number of
clock cycles for the same operations. The scheduling is determined
statically and does not change during run time. However, in ac-
tual datapaths, some functional units exhibit di�erent latencies for
the same operation depending on operands or their environment.
Although the traditional scheduling is still valid if the maximum
latencies are assumed for such units, wasteful waits occur when
the units take less latencies than those of the worst case.

One way to solve this problem is to adjust operation scheduling
dynamically [2]. However, the conventional datapath control using
a single state machine ends up with impractical circuit size because
an enormous amount of states are necessary to express all the com-
bination of delay variations of the functional units. As a promising
alternative, distributed control has been recently proposed [3, 4]
which controls a datapath with multiple �nite state machines.

Di�erent schemes for distributed controllers have been proposed
by Del Barrio [3] and Pilato [4]. All these methods, however, deal
with a case where computation is expressed with a single DFG. This
may be appropriate for accelerating kernels in DSP applications,
but not for prototyping control centric systems.

In order to apply the distributed control to larger systems, an
extension of the Del Barrio’s distributed control to handle multiple
DFGs was proposed in [5]. Rather than simply patchworking the
state transition graphs for the DFGs, it enabled dynamic operation
motion across multiple DFGs, which realized e�cient execution
like loop scheduling and trace scheduling. However, the e�ect of
dynamic code motion was limited when branch conditions were
computed at the end of the DFGs, for early units must idle-wait
until the branch target was �xed.

To address this issue, we extend the method of [5] with specu-
lative execution based on branch prediction. By this method, the
idle units may compute operations in predicted next DFGs even if
branch targets have not been �xed. Experimental results on two
examples shows that the execution cycles were reduced by 11.1%
to 21.9% when the prediction hit rate was 75%.
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2 VARIABLE LATENCY UNITS AND
DISTRIBUTED CONTROL

2.1 Variable latency units
Functional units in datapaths may exhibit di�erent latencies for the
same operation, depending on operand values, states of the units,
and environment factors. For example, shift/add-based multipliers
and dividers can omit part of the computation when some part
of multiplicand or intermediate remainder becomes zero. Memory
accesses may take di�erent cycles depending on address histories.

Let us consider executing a DFG in Figure 1 (a) with an adder
A which takes 1 cycle and a multiplier M which takes either 1 or
2 cycles. In the conventional high-level synthesis, the operations
are scheduled as (b) assuming operations 2 and 4 may take 2 cy-
cles. Even when operation 2 completes in 1 cycle, scheduling is
unchanged as shown in (c), where the second cycle is wasteful.

Toda [2] proposed dynamic scheduling based on the completion
signals from functional units which enables scheduling as shown
in Figure 1 (d). However, the controller for this dynamic scheduling
needed huge amount of states, so the resulting circuit might be
impractically large.

2.2 Distributed control
As an approach to realizing dynamic scheduling with reasonable cir-
cuit size, distributed control has recently been proposed which con-
trols functional units using multiple �nite state machines (FSMs).

In the Del Barrio’s method [3], an FSM is assigned to each func-
tion unit in a datapath. The function unit to execute each operation
is determined beforehand. The order of the operations executed by
each unit is also �xed and the controller dynamically decides the
timing to execute the operations. The Pilato’s method [4] controls
the datapath by assigning a state variable to each operation. As
Del Barrio’s method, the function unit to execute each operation
is determined beforehand but the order as well as the timing of
execution of the operations is determined dynamically.

However, these methods only discusses the case where compu-
tation is expressed by a single DFG. They have not addressed the
issue of handling a CDFG consisting of multiple DFGs, which is
essential in synthesizing hardware from speci�cation expressed in
programming languages like C.

2.3 Del Barrio’s distributed control
In the conventional control method, a whole datapath is controlled
by a single FSM (�nite state machine), as shown in Figure 2 (a). On
the other hand, in Del Barrio’s distributed control, separate FSMA
and FSMM control function units A and M , respectively, as in (b).
This allows each unit to choose execution timing independently.

Figure 2 (c) is the details of the FSMs in (b). The formulation
in this paper is slightly di�erent from the original one in [3], but
essentially the same. One state Si is assigned to an operation i in
the DFG, in which Si controls the execution of i . At Si , the FSM
waits for starti = 1 where starti becomes 1 if all the operations on
which i depends are �nished. In the case of Figure 2,

start1 = 1, start2 = 1,
start3 = (s2 ^ endM ) _ Done2,
start4 = (s3 ^ endA ) _ Done3,
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Figure 1: DFG with variable latency operations.
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Figure 2: Centralized and distributed control.

where si means that the FSM is in state Si , and endu is the comple-
tion signal from unit u. Donei stands for completion of operation i ,
whose initial value is 0 and is updated as follows.

if s1 ^ endA then Done1 = 1,
if s2 ^ endM then Done2 = 1,
if s3 ^ endA then Done3 = 1,
if s4 ^ endM then Done4 = 1.

When state is Si and starti = 1, FSMu sets the enable signal enu of
unit u.

enA = ((s1 ^ start1) _ (s3 ^ start3)) ^ ExeA,
enM = ((s2 ^ start2) _ (s4 ^ start4)) ^ ExeM ,

where Exeu means that unit u is in operation, which is de�ned as
follows.

if enA then ExeA = 1 else if endA then ExeA = 0,
if enM then ExeM = 1 else if endM then ExeM = 0.

Del Barrio’s method in [3] covers a loop with a single DFG,
where operations in the next iteration may be executed without
waiting for the completion of a certain iteration. However, it does
not handle a CDFG consisting of multiple DFGs; it does not cover
conditional jumps, for example.
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Figure 3: Extending distributed control to multiple DFGs.

2.4 Distributed control beyond the borders of
data�ow graphs

Shimizu [5] proposed an extension of the Del Barrio’s distributed
control to handle multiple DFGs, where dynamic motion of opera-
tions across multiple DFGs was achieved.

In the case of the centralized FSM, the control is transferred to
one of the next DFGs after all the operations in the current DFG are
�nished. However, in the presence of variable latency operations,
not all the units �nish their task in an DFG simultaneously, so
some of them must wait for each other at the end of the DFG. To
overcome this ine�ciency, the method of [5] enabled operations in
the next DFG to start execution before concluding the current DFG.
For example, in Figure 3 (a), where two units are controlled by two
controllers, the operations corresponding to S0 and S3 are �nished,
then the control of the second FSM can be transferred from S3 to
S11, without waiting for the completion of S1, if DFG3 is known
to be the next DFG of DFG1. In [5] the extension of the distributed
control was formulated under the restriction that only one DFG
ahead of the current DFG may be executed, i.e. at most two DFGs
may be executed at the same time. A self loop is eliminated by
duplicating the DFG, as shown in Figure 3 (b).

3 SPECULATIVE EXECUTION IN
DISTRIBUTED CONTROL

3.1 Overview
In the control method in [5], however, dynamic scheduling across
DFGs works only when the next DFG is �xed. Suppose S1 in DFG1
in Figure 4 (a) determines the target of the conditional branch.
Although the second (right) unit has �nished the computation at S3,
it cannot proceed to the next state until S1 decides the next DFG.
Since it is often the case that conditional operations to decide branch
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Figure 4: Speculative execution.

directions are computed at the very end of the DFGs, conservative
synchronization limits the e�ect of dynamic scheduling.

To address issue, we propose to extend the distributed control of
[5] with speculative execution. At the situation where next DFG to
be executed is not known, one of them is chosen based on branch
prediction. As shown in Figure 4 (b), the second unit proceed from
S3 to S11 without waiting for the completion of S1, if the branch
from DFG1 to DFG3 is predicted. If the prediction hits, there may
be reduction in execution cycles. If the prediction misses, the inter-
mediate results of the speculative execution are cancelled and the
state is forced to the head of the correct DFG, as shown in Figure
4 (c). This causes no loss in execution cycles on prediction misses,
and we have a chance of speeding-up circuits on prediction hits.

To avoid complication, we place the same restriction as in [5]
that only one DFG ahead of the current DFG may be executed. We
call a DFG a main DFG if some FSMs are executing operations in
the DFG and the other FSMs have completed execution for the DFG.
We call a DFG a frontier DFG if it is a successor DFG of the main
DFG and operations in the DFG are being executed. In Figure 4 (b),
DFG1 is a main DFG and DFG3 is a frontier DFG. The frontier DFG
does not always exist; there is no frontier DFG in Figure 4 (a).

Cancellation of execution is done based on a register save/restore
policy. Just before speculative execution starts, the contents of
the registers that may be written during speculative execution
are copied to the save registers. In the case of prediction misses,
the saved values are written back to the registers when the FSMs
transition to the right states.

3.2 Formulation
The formulation of the distributed control method in this section
is basically based on that of [5], but it is re�ned partly to make it
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easier to incorporate speculative execution, and partly to enhance
readability.

Let U be the set of units in the datapath. eu is the completion
signal of u 2 U at the current cycle. In our scheme, each u 2 U is
controlled by an FSM, denoted as Fu , where each state of Fu controls
the execution of an operation. Let �u be the current state of Fu . Let
D be the set of DFGs in the CDFG. Let Su,d = {su,d

0 ,su,d
1 , · · · ,su,d

f }
be the set of the states for u in DFG d , where �u transitions su,d

0
through su,d

f in this order. Namely, su,d
0 and su,d

f are the initial and
the �nal states in the DFG d for unit u. For design convenience, we
assume that Su,d , �. If there is no operation for u in DFG d , we
insert a dummy state.

3.2.1 End and ready signals. For d 2 D and s 2 Su,d , r (s ), e (s ),
E (s ), and e (d ) are de�ned as follows. Intuitively, r (s ) means that the
operation at s is ready for execution. e (s ) means that the execution
of the operation at s ends at the current cycle, E (s ) means that
the execution of the operation at s has been completed before the
current cycle, and e (d ) means that execution of all the operations
in DFG d �nishes at the current cycle. Let Ps be the set of the states
(operations) that (the operation of) s depends on. E0 (s ) and E 0(s )
are the initial value and the next value (the value at the next cycle)
of E (s ), respectively; E (s ) is set when e (s ) = 1 and reset at the end
of the DFG execution.

r (s ) =
^

sp 2Ps

E (sp ), (1)

e (s ) = (�u = s ) ^ r (s ) ^ eu , (2)
e (d ) =

^

u 2U
(e (su,d

f ) _ E (su,d
f )), (3)

E0 (s ) = 0, (4)
E 0(s ) = if e (d ) then 0 else e (s ) _ E (s ). (5)

The operation of s starts execution when (�u = s ) ^ r (s ).

3.2.2 State transition. When �u = su,d
i , where 0  i < f , the

next state � 0u within a DFG d is de�ned as follows.

� 0u = if r (su,d
i ) ^ e (su,d

i ) then su,d
i+1 else su,d

i . (6)

State transition across DFGs is a little complicated. The state
machine Fu can transition from the last state of DFG d to the �rst
state of a next DFG d1 if and only if the two conditions are met.

(1) Transition from d to d1 is �xed.
(2) d1 is executed either as a main DFG or as a frontier DFG in

the next cycle.

The �rst condition is formulated using � (d,d1) and �(d,d1) for
two DFGs d and d1. � (d ,d1) means that transition from d to d1 is
triggered at the current cycle, and �(d ,d1) mean that transition
from d to d1 has been �xed before the current cycle. If d1 is the
unique successor to d , then � (d,d1) = 1 and �(d,d1) = 1. Other-
wise, � (d ,d1) and �(d,d1) are de�ned as follows, assuming that the
transition from d to d1 is determined by the output ou of unit u at
state sc 2 Su,d . �0 (d,d1) and �0(d,d1) are the initial and the next
values of �(d ,d1), respectively; �(d,d1) is set when � (d,d1) = 1
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Figure 5: Inter-DFG dependency.

and is reset when the execution of d completes.
� (d,d1) = (�u = sc ) ^ eu ^ ou , (7)

�0 (d,d1) = 0, (8)
�0(d,d1) = if e (d ) then 0 else � (d,d1) _ �(d,d1). (9)

For the second condition, we de�ne M (d ) and m(d ) for a DFG
d . M (d ) intuitively means that DFG d is being executed as a main
DFG in the current cycle, and m(d ) that d will be executed as a
main DFG in the next cycle. M0 (d ) and M 0(d ) are the initial and
the next values of M (d ).

m(d ) =
_

dp 2Pd

(e (dp ) ^ � (dp ,d )), (10)

M0 (d ) = if d is the starting DFG then 1 else 0, (11)
M 0(d ) = if e (d ) then 0 else M (d ) _m(d ). (12)

Let DFGs d1,d2, · · · ,dk be successors of DFG d . They may be
executed as a main or a frontier DFG in the next cycle ifM (d )_m(d ).
Thus, when �u = s

u,d
f , the next state � 0u is written as follows.

� 0u = if r (su,d
f ) ^ e (su,d

f ) ^ (e (d ) _m(d )) then

if � (d,d1) _ �(d,d1) then su,d1
0

else if � (d,d2) _ �(d,d2) then su,d2
0

· · ·
else if � (d,dk ) _ �(d,dk ) then s

u,dk
0

else su,d
f

else su,d
f . (13)

3.2.3 Inter-DFG dependency. For inter-DFG dependency, such
as s1 ! s2 in Figure 5 (a), the end signals E (s ) do not work well.
For example, in Figure 5 (a), if s2 waits for E (s1) signal which will
be reset as soon as DFG1 �nishes, s2 can never start execution. If
reset of E (s1) is postponed until the end of s2, then s3 in the next
iteration starts without waiting for the completion of s1 in the next
iteration.

To solve this problem, we introduce E (s1,s2) for every inter-DFG
dependency from s1 to s2. It is set when s1 is �nished and reset
when s2 is reset.
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Note that s1 and s2 in E (s1,s2) are not always executed. For
example, in Figure 5 (b), suppose branch from DFG d1 to DFG d4 is
taken. If s8 would waits for E (s5,s8), s8 could never start execution,
because s5 is not executed and E (s5,s8) will never be set. Moreover,
E (s1,s4) would not reset in this iteration. Then if branch from d1
to d2 might be taken in the next iteration, s4 would start execution
without waiting for the completion of s1.

This kind of confusion is resolved by setting/resetting the end
signal E (s1,s2) when directions of branches are determined.

• If it is known that the DFG of s1 will never be executed in
the current iteration, then E (s1,s2) is set.
• If it is known that the DFG of s2 will never be executed in

the current iteration, then E (s1,s2) is reset.
• If it is known that both the DFGs of s1 and of s2 will never

be executed in the current iteration, then the initial value is
set to E (s1,s2).

For example, in Figure 5 (b), branch from d1 to d4 is determined
when �(d1,d4) _ � (d1,d4) becomes true, and at this point, it is also
determined that d2 and d3 will not be executed in this iteration.
Thus, E (s1,s4) = 0, E (s3,s6) = 0, and E (s5,s8) = 1 are enforced.

The initial and next values of E (s1,s2), denoted as E0 (s1,s2) and
E 0(s1,s2), respectively, are de�ned as follows, where� (s1) and� (s2)
are the conditions in which s1 and s2, respectively, will not be
executed in the current iteration.

E0 (s1,s2) = if s1 ! s2 is loop carried dependency
then 1 else 0, (14)

E 0(s1,s2) = if � (s1) ^ � (s2) then E0 (s1,s2)

else if e (s2) _ � (s2) then 0
else if e (s1) _ � (s1) then 1
else E (s1,s2). (15)

With the extended end signals, equation (1) de�ning ready signal
r (s ) is revised as follows, where Ps is the set of the states that s
depends on in the same DFG as s , and Xs is the set of the states
that s depends on in the other DFGs.

r (s ) = (
^

t 2Ps

E (t )) ^ (
^

t 2Xs

E (t ,s )). (16)

3.2.4 Speculative execution. We assume B (d ,d1) denotes that
branch from d to d1 is predicted. The prediction may be either static
or dynamic.

Branch prediction changes the state transition in the following
way: 1) it allows transition to the state in the predicted DFG, and
2) it forces the transition to the correct states. This is incorporated
into the formulation by revising the equations (6) and (13).

Let d1,d2, · · · ,dk be successor DFGs of DFG d and let branch
from d to d1 be predicted (namely, B (d,d1) = 1 is assumed). Then
state transition is modi�ed as follows.

• State transition from the last state of d
State transition regarding branch prediction occurs only
when none of the other branches occur. Thus we only have

to correct the last else clause of equation (13).

� 0u = if r (su,d
f ) ^ e (su,d

f ) ^ (e (d ) _m(d )) then

if � (d,d1) _ �(d,d1) then su,d1
0

· · ·
else if � (d,dk ) _ �(d,dk ) then s

u,dk
0

else if B (d,d1) then su,d1
0

else su,d
f

else su,d
f . (17)

• State transition within d1
Equation (6) must be corrected so that branch prediction
misses are handled.

� 0u = if � (d,d2) _ �(d,d2) then su,d2
0

· · ·
else if � (d,dk ) _ �(d,dk ) then s

u,dk
0

else if r (su,d1
i ) ^ e (su,d1

i ) then su,d1
i+1 else su,d1

i (18)

• No change on the state transition within d2,d3, · · · ,dk .
As for the register values, save must be done when B (d,d1) holds

in equation (17), restore must be done when either of � (d,d2) _
�(d,d2) through � (d,dk ) _ �(d,dk ) holds in (18). At the same time
as the register restore, the end signals for inter-DFG dependency
must be adjusted according to the equation (15).

4 EXPERIMENTAL RESULTS
RTL circuits have been designed in Verilog HDL for two benchmark
circuits, in order to compare centralized control, distributed control
without speculative execution [5], and proposed distributed control
with speculative execution. In this experiment, we assume that mul-
tiplication takes 1 or 2 cycles depending on operands, and all the
other operations take 1 cycle. We assume static branch prediction
both in centralized and distributed control. In the both benchmarks,
conditional operations to decide the branch directions can be sched-
uled only in the last steps of the DFGs.

(1) bicubic: The CDFG in Figure 6 (a) is executed with two ALUs
(A1 and A2) and two multipliers (M1 and M2). Figure 6 (b) is an
example of binding and scheduling for distributed control (deter-
mined manually). DFG0 is duplicated to remove the self loop. d0,
d0c , d1, and d2 are dummy states. Figure 6 (c) is a result of loop and
trace scheduling for centralized scheduling.

(2) m-lerp: The CDFG in Figure 7 (a) is executed with a compara-
tor (EQ), two ALUs (A1 and A2), and two multipliers (M1 and M2).
The binding and scheduling examples for distributed and central-
ized control are shown in Figure 7 (b) and (c), respectively.

TABLE 1 (a) summarizes the comparison of the execution cycles
for the three control schemes. The computation shown in CDFGs
in Figure 6 (b) and Figure 7 (b) were iterated for 128 times. r is
the probability where the multiplication takes two cycles; r = 1.0
means all the multiplications took 2 cycles, while r = 0.0 means all
the multications took 1 cycle.
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Table 1: Experimental result.

(a) Execution cycles
pred. hit r = 1.0 r = 0.5 r = 0.0

rate CC DC SE DC SE DC SE
(1) bicubic 87.5% 1,026 1,215 1,087 (�10.5%) 1,097 922 (�16.0%) 982 750 (�23.6%)

75.0% 959 1,138 1,012 (�11.1%) 1,039 876 (�15.7%) 933 729 (�21.9%)
50.0% 775 919 825 (�10.2%) 854 741 (�13.2%) 793 667 (�15.9%)
33.3% 695 831 754 ( �9.3%) 786 699 (�11.1%) 737 643 (�12.8%)
0.0% 516 580 580 ( ±0.0%) 580 580 ( ±0.0%) 580 580 ( ±0.0%)

(2) m-lerp 87.5% 739 966 782 (�19.0%) 906 718 (�20.8%) 846 651 (�23.0%)
75.0% 726 933 781 (�16.3%) 860 699 (�18.7%) 819 650 (�20.6%)
50.0% 656 872 774 (�11.2%) 823 714 (�13.2%) 767 649 (�15.4%)
33.3% 647 812 750 ( �7.6%) 754 682 ( �9.5%) 717 638 (�11.0%)
0.0% 609 695 695 ( ±0.0%) 649 649 ( ±0.0%) 617 617 ( ±0.0%)

CC: centralized control (trace and loop scheduling), DC: distributed control [5], SE: distributed control with speculative execution (proposed)
multiplication 1 ⇠ 2 cycles, r : probability of 2 cycle multiplication

(b) Synthesis result.
CC DC SE

FFs LUTs delay [ns] FFs LUTs delay [ns] FFs LUTs delay [ns]
(1) bicubic 142 268 8.398 261 585 8.534 261 603 8.643
(2) m-lerp 205 375 8.061 293 696 7.595 296 721 8.205

synthesizer: Xilinx Vivado (2016.4), target: Xilinx Artix-7 (xc7a100tcsg324-3)

Column “pred. hit rate” shows the hit rate of branch prediction
(the input data were generated randomly). Column “CC” shows
the results of the classical centralized control scheme, with the
scheduling and biding in Figure 6 (c) and Figure 7 (c) where all the
multiply operations were assumed to take 2 cycles. Columns “DC”
and “SE” are both results of distributed control, where the former is
without speculative execution [5] and the latter is with speculative
execution (the proposed method). They both are based on the same
scheduling and binding in Figure 6 (b) and Figure 7 (b)

Comparison between DC and SE shows that the proposed method
needed fewer execution cycles than the previous method. Naturally,
the reduction rate is higher when the prediction hit rate is higher
and r is lower. When the prediction hit rate was 75%, the execution
cycles were reduced by 11.1% to 21.9%. As compared with CC, the
proposed method took little more cycles when r = 1.0. This is
because of the limitation of our method that only 2 DFGs can be
executed simultaneously. However, when r is smaller, the execu-
tion cycles were reduced signi�cantly due to the e�ect of dynamic
scheduling.

TABLE 1 (b) summarizes the result of logic synthesis. The logic
synthesizer was Xilinx Vivado (2016.4) and the target was Artix-7
(xc7a100tcsg324-3). Subcolumns “FFs,” “LUTs,”, and “delay,” show
the number of the �ip-�ops, the number of the look-up tables, and
the critical path delay of each circuit. Introduction of speculative
execution increases circuit size in terms of LUT count by 3.3% on
average, though the LUT count is as much as 2 times larger than
that of the centralized control. However, the critical path delay is
almost the same. The critical path delay is increased by speculative
execution by 4.6% on average, but it is only 2.4% larger than that of
the centralized control.

The cancellation of speculative execution based on the formu-
lation in 3.2.4 worked only for the two benchmarks with manual
design. However, in order to handle more general cases, especially
with complicated inter-DFG dependency, we might add some limi-
tations or further re�ne the formulation.

5 CONCLUSION
This paper has proposed a method of introducing speculative exe-
cution in the distributed control beyond the border of DFGs. This
contributes to enhance speed performance by increasing the oppor-
tunity of dynamic operation motion across DFGs.

Currently, the circuits are designed by hand as well as the sched-
uling and biding are determined manually. We are now working on
a scheduling and biding method suitable for our distributed control
and automatic circuit generation framework.
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Figure 6: Benchmark bicubic.
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Figure 7: Benchmark m-lerp.105


