
Reverse Engineering from Mainframe Assembly to

C Codes in Legacy Migration

Daisuke Fujiwara and Nagisa Ishiura

School of Science and Technology

Kwansei Gakuin University

2–1 Gakuen, Sanda, Hyogo, 669–1337, Japan

Ryo Sakai, Ryo Aoki, and Takashi Ogawara

SYSTEM’S Co., Ltd.

7–24–5 Nishigotanda

Shinagawa-ku, Tokyo, 141–0031 Japan

Abstract—This paper presents a method of constructing C
programs from mainframe assembly programs. IBM mainframe
assembly programs, which are called as subroutines from pro-
grams written in high-level language such as COBOL, are
automatically translated into equivalent C programs. The as-
sembly programs are converted into intermediate representation
(IR) of the SSA form on which dataflow analysis, recognition
of control structures, and pattern match based transformation
are applied to produce codes with readability. Our method
features documentation of the translation process. Along with
translation, correspondence between the source assembly codes
and the resulting C codes are generated as documents, which
plays very important role in manually correcting incomplete
C codes from architecture dependent codes or self morphing
codes. Furthermore, comments in the assembly programs are
embedded into appropriate positions in the resulting C programs.
A prototype system based on our method successfully translated
some assembly codes into C program with function, if, and do-
while structures.

I. INTRODUCTION

In many business and enterprise systems, mainframe com-
puters have long been used as core computing systems, for
their high reliability and fault tolerance. In recent years,
however, as lower cost open systems such as Linux and
Windows servers have gained higher performance, there has
been motivation to move from the legacy systems to the open
systems. Since the legacy systems accumulate business know-
how of many years, it is often a rational choice to port the
existing systems to operate on the open systems than to re-
develop equivalent systems. Such kind of porting is called
“legacy migration,” on which there is a growing demand.

One of the core technologies in legacy migration is porting
of programs on the mainframe computers, written in COBOL,
PL/1, assembly languages, etc., to run on the modern sys-
tems. Programs written in high-level languages may work by
re-compilation, or they can be auto-converted [1] or auto-
corrected to run on the target systems. Since they are relatively
easy to understand, manual modification on the resulting codes
is also easy. On the other hand, assembly programs needs
manual translation to some languages, after understanding their
behavior. Although those assembly programs are usually small,
a single legacy system may contain hundreds, or sometimes
thousands of assembly codes, which needs enormous man-
hours for migration.

To solve this problem, there have been several attempts on
automated conversion of assembly codes to high-level codes.
Literatures [5], [6], [7] have presented methods of translating

IBM mainframe assembly codes into to C programs. Assembly
codes are converted into intermediate representation, to which
reverse engineering such as reconstruction of control structures
are performed to generate C codes with reasonable readability.

However, it should be noted that static translation does not
always succeed; architecture specific codes and self morphing
codes may not always be converted to correct codes. In
such cases, the resulting codes must be first inspected to see
what went wrong and be modified manually. In this situation,
resulting C codes alone are not enough; it is very important that
the process of translation or correspondence between original
assembly code fragments and the resulting code sequence
should be well documented.

This paper proposes a method of translating IBM assembly
programs to equivalent C programs, with emphasis on gener-
ating auxiliary information to understand the resulting C codes
and the conversion process. C codes with high readability are
generated via intermediate representation extracted from the
given assembly codes, in the similar way as [5], [6], [7]. At
the same time, a table to show the correspondence between
the assembly instructions and the resulting C code fragment is
generated. Furthermore, the comments in the assembly codes,
which hold important information to understand the program
such as the authors of the codes, how the codes should be used,
the intent of each code fragment, etc., are embedded into the
proper position of the resulting C programs.

The tool based on the proposed method is implemented in
Perl5, which has successfully converted some assembly pro-
grams consisting of about 100 lines into working C programs.

II. MIGRATION OF ASSEMBLY PROGRAMS

A. Target of Conversion

In this paper, we deal with the problem of converting hand
written assembly programs of the IBM 370–390 mainframes
into C programs, for there is a big demand for migration from
this architecture. As shown in Fig. 1, we assume that the
assembly programs are called as subroutines from the other
programs written in assembly, COBOL, etc. We also assume
that C libraries equivalent to the library routines and macros
called from the assembly programs are already prepared.

The first priority in this kind of conversion is that the
resulting C programs should work correctly. This needs the
same technology as binary translation [2]. The second priority
is readability of the reconstructed C programs. This is because
the new programs must be maintained, or sometimes be

2016 5th IIAI International Congress on Advanced Applied Informatics

978-1-4673-8985-3/16 $31.00 © 2016 IEEE

DOI 10.1109/IIAI-AAI.2016.37

1058

Fig. 1. Target of conversion.

debugged, on the new platforms. This needs the technologies
used in decompilation [3], [4].

There have been several attempts to convert mainframe as-
semblies to higher-level programs. Feldman [5] translates IBM
assemblies to C programs via an intermediate representation
named HLL. Ward [6], [7] makes use of a formal intermediate
model FermaT to generate C programs with high readability
from IBM assembly codes.

However, automatic translation does not always succeed.
Since the character codes used on the mainframe computers
and the open systems are different, routines that directly ma-
nipulate character bit patterns may not be converted to intended
programs. Differences of the address spaces and addressing
conventions, such as the use of the most significant bit on the
IBM mainframes, cause the same problems. Many unexpected
coding techniques are often used in hand written assemblies.
Furthermore, it is impossible to convert self morphing codes
completely by static translation.

Thus, in a practical point of view, resulting codes must
be investigated to see if the translation was correct or to see
what went wrong. For this purpose, documentation of how
codes are translated would be very important. At the same
time, comments in the original assembly codes would be very
helpful, for they describe the intentions behind the codes or
give explanations to complicated logic.

B. IBM Assembly

The IBM mainframes have 32bit architecture. It has 16
general purpose registers numbered 0 through 15. It deals
with 32bit, 16bit, and 8bit binaries as well as character strings
and packed/zone decimals. The instruction set consists of 631
instructions with 0, 1, 2, or 3 operands.

An example of the IBM assembly program is shown in
Fig. 2. This code defines a subroutine named EMONTH which
receives the address to a date in YYYYMMDD form as the
first parameter, and write the last day of the month of the date
in the same form at the address passed as the second parameter.

III. CONVERSION OF MAINFRAME ASSEMBLY TO C

A. Overview

The flow of our translation process is shown in Fig. 3.
A given assembly program is compiled into an intermediate
representation (IR) of the SSA (static single assignment) form,
where each instruction is decomposed into atomic operations.
Dataflow analysis and a various kind of transformation on the
IR are performed to generate a resulting C program.

B. Intermediate Representation (IR)

The structure of the IR in our method is shown in Fig. 4.
The root node Assembly, representing the assembly program

1: EMONTH CSECT 00000000
2: USING EMONTH,12 00000100
3: STM 14,12,12(13) 00000200
4: LA 12,0(,15) 00000300
5: LA 15,SAVE 00000400
6: ST 13,4(,15) 00000500
7: ST 15,8(,13) 00000600
8: LR 13,15 00000700
9: LM 3,4,0(1) 00000800

10: CLC 0(6,4),=C’00000000’ 00001100
11: BNE ER_FMT 00001200
12: B FC_EOM 00001300
13: ER_FMT EQU * 00001400
14: ABEND 0999,DUMP 00001500
15: FC_EOM BAL 14,EOM 00001600
16: EOM EQU * 00001700
17: MVC 0(8,4),=CL9’ ’ 00001800
18: LA 0,6 00001900
19: LR 1,3 00002000
20: EOM1 EQU * 00002100
21: CLI 0(1),C’0’ 00002200
22: BL RET 00002300
23: CLI 0(1),C’9’ 00002400
24: BH RET 00002500
25: LA 1,1(,1) 00002600
26: BCT 0,EOM1 00002700
27: CLC 4(2,3),=C’01’ 00003000
28: BL RET 00003100
29: CLC 4(2,3),=C’12’ 00003200
30: BH RET 00003300
31: PACK WORK,4(2,3) 00003400
32: CVB 2,WORK 00003500
33: BCTR 2,0 00003600
34: MH 2,=H’4’ 00003700
35: LA 5,MLAST 00003800
36: AR 2,5 00003900
37: LH 0,4(,2) 00004000
38: SH 0,0(,2) 00004100
39: CVD 0,WORK 00004200
40: UNPK 6(2,4),WORK 00004300
41: OI 7(4),X’F0’ 00004400
42: MVC 0(6,4),0(3) 00004500
43: B RET 00004600
44: RET EQU * 00004700
45: L 13,4(,13) 00004800
46: LM 14,12,12(13) 00004900
47: SLR 15,15 00005000
48: BR 14 00005100
49: MLAST DC H’000’,H’000’ 00005200
50: DC H’031’,H’031’ 00005300
51: DC H’059’,H’060’ 00005400
52: DC H’090’,H’091’ 00005500
53: DC H’120’,H’121’ 00005600
54: DC H’151’,H’152’ 00005700
55: DC H’181’,H’182’ 00005800
56: DC H’212’,H’213’ 00005900
57: DC H’243’,H’244’ 00006000
58: DC H’273’,H’274’ 00006100
59: DC H’304’,H’305’ 00006200
60: DC H’334’,H’335’ 00006300
61: DC H’365’,H’366’ 00006400
62: LTORG 00006500
63: SAVE DS 18F 00006600
64: WORK DS D 00006700
65: DROP 12 00006800
66: LTORG 00006900
67: SPACE 00007000
68: END 00007100

Fig. 2. IBM assembly program.

parse

transformations

generation C
program

assembly
program

IR
(SSA)

Fig. 3. Flow of translation process.

under conversion, consists of a list of Sections and a Symbol-
Table. The SymbolTable keeps track of all the variable names,
function names, label names, etc. in the program. The Section
represents a section in the program, a group of instructions and
data placed in contiguous storage locations, which has a list
of Functions. The Function represents a subroutine and has a
list of Ifs, Loops, and BasicBlocks. The If and Loop represent
if and do-while structures having then/else parts and a body
part, respectively. The BasicBlock represents a basic block
consisting of a list of Operations and links to its next basic
blocks. The Operation represents an atomic operation, such as
arithmetic/logical, load/store, string and decimal operations.

Fig. 5 shows some examples of conversion from instruc-
tions to IR. A load instruction (L) is decomposed into a
32bit addition (addu32) to calculate the address and a 4-byte
memory access operation (load32). String and decimal data
manipulation to implement instructions like AP (add packed
decimal) and CLC (compare logical character) are dealt with

1059

Fig. 4. Structure of IR.

assembly IR
L 11,4(,13) ⇒ addr = addu32(r13, 4)

r11 = load32(addr)

AP DAT1,DAT2+5(3) ⇒ cc=addpack(DAT1, 8, DAT2, 8)

CLC 4(2,4),=C’01’ ⇒ addr=addu32(r4, 4)

cc=compstr(addr, C’01’, 2)

Fig. 5. Conversion from instructions to IR.

as atomic operations.

The lists of the operations translated from the instructions
are converted to the SSA form. This normalizes different
assembly code sequences of the same meaning to the same IR.
The SSA form is also useful in unnecessary code elimination
(in III-D) and transformation by pattern matching (in III-F).
After the SSA conversion, dataflow analysis is performed and
definition/reference relation is stored into the IR.

C. Recognition of Control Structures

1) Recognition of Functions: Firstly, all the entry points
in the IR are identified. The entry points are either 1) the
basic blocks starting with nop operations converted from
ENTRY instructions, or 2) the basic blocks which are the
targets of jump operations converted from BAL, BALR, and
BAS instructions. A function is extracted by enumerating all
the basic blocks reachable from each entry point. In hand
written assembly codes, there are cases where a basic block
is reachable from multiple entry points. For simplicity, such
situation is averted by cloning the basic blocks.

2) Recognition of Loops: Do-while loops are recognized
according to the following steps.

1) Enumerate all the loops by traversing basic blocks
from the starting point of recognition (which is the
entry point of the function in the first iteration).

2) Choose a loop, whose bottom basic block b is the
farthest from the starting point and the top basic
block t is the nearest to the starting point. This is to
recognize the outermost loop first and to avoid jump
into the loop.

3) Determine set B of the basic blocks that form the
body of the loop, which are reachable from t and
reachable to b (as shown in Fig. 6).

4) Extract the continuation condition of the loop from
the branch condition of the bottom basic block b, and
construct the data structure of the loop.

5) Apply this process to the other basic blocks in the
function and the body of the loop until no loop is
detected.

3) Recognition of Conditionals: If statements are recog-
nized in the following steps.

t

b

1

3

9

4 5

10

6 11

12

8

reachable to b

reachable from t 1

9

10

11

12

8

t

b

3

4 5

6

loop
body

Fig. 6. Recognition of loop body.

1

3

6

2

9

10

11

12

14

f

137

8

4

5

0 reachable
from t reachable

from e

et

1

3

6

2

9

10

11

12

14

f

137

8

4

5

0

j

Fig. 7. Choice of branch and join nodes.

1) Choose a set of branch point f and join point j.
By traversing basic blocks from the starting point of
recognition (the entry point of the function in the first
iteration), select the basic block f that has branch
and is nearest to the starting point. Let t and e be
the next basic blocks of f . Then, identify the joining
basic block j that are reachable from both t and e and
yet nearest to f (see Fig. 7). This is to avoid jump
into then and else parts of the if statement. Note that
there are cases where there is no joining point j.

2) Identify the sets of basic blocks T and E that belong
to then part and else part, respectively, of the if
statement. Let T ′ be the set of the basic blocks
reachable from t. Let X be the set of basic blocks in
T ′ that are directly reachable from the basic blocks
in T ′, and X ′ be the set of the basic blocks reachable
from X . Then T is defined as T ′ ∪X ′ (see Fig. 8).
E is computed in the same way.

3) Extract the branch condition from the basic block f
and construct the data structure of the if statement.

4) Apply this process to the other basic blocks in the
function and the then part and else part of the if
statement, until no branch is detected.

D. Elimination of Register Save/Restore and Dead Codes

Based on the result of the data flow analysis, codes for
register save and restore of each function, which are no more
necessary in C programs, are deleted. Store operation s of
32bit data is judged as save codes and is removed from the IR
if 1) the address operand of s is obtained by adding offset of
0, 4, · · ·, or 68 to register 13, and 2) no operation defines the
data operand of s. Similarly, 32bit load operation l is regarded
as restore codes and is eliminated if 1) the address operand of
l is obtained by adding offset of 0, 4, · · ·, or 68 to register 13,
and 2) no operation uses the result of l.

1060

1

3

6

2

9

10

11

12

14

f

137

8

4

5

0 reachable
from t reachable

from e

et

1

3

6

2

9

10

11

12

14

f

137

8

4

5

0

et

j j

T

1

3

6

2

9

10

11

12

14

f

137

8

4

5

0

et

j

T E

Fig. 8. Recognition of then and else parts.

IR C
r10=add32(r10,r7) ⇒r10=r10+r7;

cc=addpack(D1,8,D2,8) ⇒cc=addpack(D1,8,D2,8);

cc=compstr(s,C’01’,2) ⇒cc=compstr((char*)s, "01",2);

Fig. 9. IR to C Conversion.

Dead codes, which are often created during long years’
maintenance, are eliminated during the function recognition
process (in III-C1).

E. IR to C Conversion and Handling of Dummy Sections

The IR is almost straightforwardly converted into a C
program. The registers and variables in the original assembly
program are treated as global variables in the C program.
Arithmetic/logic operations and load/store operations are also
converted into the corresponding operations in the C program.
Operations on strings and decimals are translated into function
calls to the the support library. Fig. 9 shows examples of
the conversion, where r10 and r7 are registers, cc is the
condition code, addpack and compstr are support library
calls for addition on packed decimals and comparison on
strings, respectively.

In order to enhance readability, arithmetic operations are
collected into a single expression whenever possible. Fig. 10
shows examples. If the results of all the operations are refer-
enced only once, they are grouped into a single expression.

A dummy section of the IBM assembly, initiated by DSECT
instruction, is a section that results in no machine instruction
nor data area but is used to specify the layout of the aggregate
data passed between subroutines. In our method, the memory
layout described by DSECT is converted to definition of the
corresponding struct type and the data are accessed using the
register variable designated by USING instruction as a base
pointer. Fig. 11 shows an example. The DSECT instruction
defines data layout with two items A and B, and the MAIN

routine accesses the data area pointed by register 2 according to
the layout. The dummy section is expressed by type DAT1_t
and the data are accessed using r2 as a base pointer.

F. Readability Improvement by Pattern Matching

In our method, further readability improvement is at-
tempted by pattern matching based transformation. This is re-
alized by defining rewriting rules on tree structures consisting
of IR operations. Fig. 12(a) defines a tree rewriting rule to
make a conditional statement based on string comparison more
readable. IR in Fig. 12(b) is converted into IR’ by the rule,
resulting in program C’ which should be better than C.

C
r1_1=mul32(r1,X)

r1_2=add32(r1_1,Y)

r1_3=mul32(r1_2,Z)

⇒

C’
r1 = ((r1*X)+Y)*Z;

C
r1_1=mul32(r1,X)

r2_1=load32(r1_1)

r1_2=add32(r1_1,Y)

r1_3=mul32(r1_2,Z)

r2_2=add32(r2_1,T)

⇒

C’
r2 = r1*X;

r1 = (r2+Y)*z;

r2 = r2+T

Fig. 10. Generation of expression with multiple operations.

DAT1 DSECT

A DS F

B DS 4C

・・・
MAIN CSECT

USING DAT1,2

MVI A,123

MVC B,=C’abcd’

・・・

⇒

typedef struct {

int A;

char B[4];

} DAT1_t;

int main(void){

((DAT1_t*) r2)->A = 123;

strncpy(((DAT1_t*) r2)->B,

"abcd", 4);

・・・

Fig. 11. DSECT Conversion

IV. DOCUMENTATION

Due to limitation of static translation and to architectural
issues, C programs generated from assembly programs may not
always work. In such cases, the C programs must be inspected
and modified manually. Even after the new C programs run
successfully, they must be altered for maintenance. In such a
situation, understanding of the code must be important. This
paper proposes (1) to generate a table to show correspondence
between the original and the resulting codes, and (2) to
embed comments in the original assembly program into proper
positions of the translated C program.

A. Correspondence between Instructions and Statements

Along with a working C programs for a given assembly
program, a table to show the correspondence between original
instructions and resulting C code fragments is generated in an
HTML file. Fig. 13(a) shows an example. The STM instruction
in line 113 has no corresponding C code because it is recog-
nized as a save code and deleted. The L instruction in line 114
has been translated into the two C statements. The resulting
C statements for the AH and SH instructions in lines 115–116
are grouped because their relation is many-to-many. Note that
the rows of the table is based on the order of the statements in
the C program, so the assembly instructions are reordered as
123, 124, 127, 125, 126, and 128 as the result of if statement
recognition.

The table is generated by referencing the back pointers (de-
picted in dashed arrows in Fig. 13(b)) from the IR operations
to the assembly instructions. If there is no IR operation for
an assembly instruction (as 1©), a virtual IR operation NOP
is generated. When one or more IR operations have links to
a single assembly instruction (as 1© and 2©), a table entry is
created after all the IR operations for the assembly instruction
are translated to C statements. If multiple IR operations are
grouped to form a single C statement, all the instructions linked
to the operations are put into an entry of the table (as 3©).

B. Embedding Assembly Comments to C

A comment of the IBM assembly are either 1) a string
placed in the same line of an instruction at the right of the

1061

next

compstr E

r3 3C’MXD’

MXD

strncmp

NZ

r3 3C’MXD’

==

0

next

MXD

(a) Rewriting rule

CLC =C’MXD’,0(R3)
BE MXD

ASM

IR IR’

cc = compstr(C’MXD’, r3, 3)
BB.next = {
 condv=>cc, cond=>E, then=>MXD
}

tmp0 = strncmp(C’MXD’, r3, 3)
tmp1 = equ32(tmp0,0)
BB.next = {
 condv=>tmp1, cond=>NZ, then=>MXD
}

if (strncmp("MXD", (char*) r3, 3)== 0)
 goto MXD;

cc = compstr("MXD", (char*) r3, 3);
if (cc & cc_E)
 goto MXD;

C
C’

(b) Application of the rule

Fig. 12. Readability improvement by pattern matching.

(a) Correspondence table (HTML)

(b) Establishing the correspondence

Fig. 13. Generation of correspondence table.

operands of the instruction, or 2) a string in a line starting
from character ’*’. In our method, assembly comments are
lined to instructions, and are embedded into the resulting C
program as their corresponding C statements are generated.

Assembly comments are classified into the following 3
types and are linked to instructions. Two instructions END

(marking the end of the program) and EJECT (forcing a page
break in source code listing) plays different role in comment
classification than the other instructions, so in this paper,
they are referred to as delimiter instructions and the other
instructions as normal instructions.

1) Upper comments
Comments between normal instruction i and the

 ...
0: STM 14,12,12(13)
1: *calculate
2: *(modified 2005.10.3)
3: SH 0,0(,2) SUB
4: AH 0,0(,3) ADD
5: *end calculate
6: EJECT
7: L 15,CALLADR LOAD
8: *call BDISPLAY
9: BALR 14,15 CALL
 ...

upper comments of 3: SH

right comment of 3: SH

right comment of 4: AH

lower comment of 4: AH

Fig. 14. Classification of comments.

 ...
0: STM 14,12,12(13)
1: *calculate
2: *(modified 2005.10.3)
3: SH 0,0(,2) SUB
4: AH 0,0(,3) ADD
5: *end calculate
6: EJECT
7: L 15,CALLADR LOAD
8: *call BDISPLAY
9: BALR 14,15 CALL
 ...

 ...
 0: //*calculate
 1: //*(modified 2005.10.3)
 2: uint32_t addr0=r2; // SUB
 3: int16_t tmpvar0=*(int16_t*)addr0;
 4: uint32_t addr1=r3; // ADD
 5: int16_t tmpvar1=*(int16_t*)addr1;
 6: r0=r0-(int32_t)tmpvar0+(int32_t)tmpvar1;
 7: //*end calculate
 8: //*call BDISPLAY
 9: BDISPLAY((void**) r1); // LOAD
10: // CALL
 ...

Assembly C

Fig. 15. Comment embedding.

previous instruction of i are defined as the upper
comments of i. In Fig. 14, for example, lines 1–2
are the upper comments of the SH instruction in line
3.

2) Right comments
A comment placed at the right of normal instruction
i is defined as the right comment of i. In Fig. 14,
string SUB in line 3 is the right comment of the SH
instruction.

3) Lower comments
The lower comments of normal instruction i exist
only when i’s next instruction is a delimiter in-
struction. Let k be the next normal instruction of
i, and j be the previous (delimiter) instruction of
k. Then comments between i and j are defined as
lower comments of i. In Fig. 14, line 5 is the lower
comment of the AH instruction in line 4.

Based on the above classification, the positions of the
comments in the C program are determined as follows.

1) The upper comments of instruction i are placed above
the first C statement generated from i. In Fig. 15, for
example, since SH instruction in line 3 is expanded to
statements in lines 2, 3, and 6, the upper comments
of SH (assembly lines 1–2) are embedded into lines
0–1 of the C program.

2) The right comment of instruction i is placed at the
right of the first C statement generated from i, as //
SUB in line 2 of the C program.

3) The lower comments of instruction i are placed below
the last C statement generated from i. The assembly
comments in line 5 goes to line 7 of the C program.

Comment generation according to this policy is imple-
mented by making use of the back pointer from the IR
operations to the assembly instructions.

1062

V. IMPLEMENTATION

A migration system based on the proposed method has been
implemented in Perl 5. It operates on Ubuntu 14.04LTS, Mac
OSX 10.10, and Cygwin on Windows. Currently, translation
of 86 instructions out of 631 has been supported.

Fig. 16(a) is the result of conversion from the assembly
program in Fig. 2. Subroutine EOM (in lines 16-48) of the
assembly was converted to the function in lines 30–75. The
code is structured with a do-while loop (in lines 34–46) and
if statements (in lines 36–45, 48–71, and 51–70). In line 54,
multiple operations are grouped into a single statement. Pattern
matching based transformation proposed in III-F was applied
to the string comparison in lines 36, 39, 48, and 51. The
behavior of the converted program was confirmed by the driver
program in Fig. 16(b).

There are some limitations in our current implementation.
The resulting C programs do not run properly on 64bit
machines, for the memory layout of the original IBM assembly
is based on 32bit architecture. The current system does not
support EX instruction which modifies other instructions.

VI. CONCLUSION

This paper has proposed a method of converting IBM
assembly programs to C programs, and at the same time
generating a document of conversion and embedding assembly
comments into C programs. Future work includes support
of the remaining instructions, improvement of readability by
adding tree rewriting rules, and migration to 64bit architecture.

ACKNOWLEDGMENT

The authors would like to thank Kenji Okamoto of SYS-
TEM’S Co., Ltd. for valuable advice for this research. We
would also like to thank all the members of Ishiura Lab.
of Kwansei Gakuin University for their help developing the
prototype systems. This work was partly supported by Small
and Medium Enterprise Agency’s “Services for reforming
SMEs and micro-businesses, manufacturing, commerce and
services” of fiscal 2013.

REFERENCES

[1] T. Ogawara: “Information processing apparatus, information processing
method, and program,” Japanese patent, 2014–215938 (Nov. 2014).

[2] C. Cifuentes, M. Van Emmerik, D. Ung, D. Simon, and T. Waddington:
“Preliminary experiences with the use of the UQBT binary translation
framework,” in Proc. Workshop on Binary Translation, pp.12–22 (Oct.
1999).

[3] M. Van Emmerik: Static single assignment for decompilation, PhD
Thesis, University of Queensland (2007).

[4] G. Chen, Z. Wang, R. Zhang, K. Zhou, S. Huang, K. Ni, Z. Qi, K.
Chen, and H. Guan: “A refined decompiler to generate C code with
high readability,” in Proc. Working Conference on Reverse Engineering,
pp.150–154 (Oct. 2010).

[5] Y. A. Feldman: “Portability by automatic translation: A large-scale case
study,” in Proc. Knowledge-Based Software Engineering Conference,
pp.123–130 (Nov. 1995).

[6] M. P. Ward: “Assembler to C migration using the FermaT transformation
system,” in Proc. IEEE International Conference on Software Mainte-

nance 1999 (ICSM ’99), pp. 67–76 (Aug.–Sept. 1999).

[7] Martin Ward: “Assembler restructuring in FermaT,” in Proc. IEEE Inter-

national Working Conference on Source Code Analysis and Manipulation

(SCAM 2013), pp. 147–156 (Sept. 2013).

1: #include <stdio.h>
2: #include <stdlib.h>
3: #include <string.h>
4: #include <stdint.h>
5: #include "miglib.h"
6:
7: static uint32_t r0, r1, r2, r3, r4, r5, r6, r7;
8: static uint32_t r8, r9, r10, r11, r12, r13, r14, r15;
9: static int cc;

10: static char savearea[72];
11:
12: int16_t MLAST[] = {
13: 0, 0,
14: 31, 31,
15: 59, 60,
16: 90, 91,
17: 120, 121,
18: 151, 152,
19: 181, 182,
20: 212, 213,
21: 243, 244,
22: 273, 274,
23: 304, 305,
24: 334, 335,
25: 365, 366
26: };
27: uint32_t SAVE[18];
28: uint64_t WORK;
29:
30: void EOMfunc(void){
31: strncpy((char*) r4, " ", 8);
32: r0 = 6;
33: r1 = r3;
34: do {
35: EOM1: ;
36: if (strncmp((char*) r1, "0", 1) < 0) { goto RET; }
37: else {
38: BB1: ;
39: if (strncmp((char*) r1, "9", 1) > 0) { goto RET; }
40: else {
41: BB2: ;
42: r1 = r1 + 1;
43: r0 = r0 - 1;
44: }
45: }
46: } while (r0);
47: BB3: ;
48: if (strncmp((char*) r3+4, "01", 2) < 0) { goto RET; }
49: else {
50: BB4: ;
51: if (strncmp((char*) r3+4, "12", 2) > 0) { goto RET; }
52: else {
53: BB5: ;
54: zone_to_pack((char*) &WORK, 8, (char*) r3+4, 2);
55: r2 = pack_to_int32((char*) &WORK, 8) - 1;
56: BB6: ;
57: r2 = (r2 * 4) + (uint32_t) MLAST;
58: uint32_t addr27 = r2 + 4;
59: r0 = * (uint16_t*) addr27;
60: int16_t tmpvar29 = * (int16_t*) r2;
61: r0 = r0 - (int32_t) tmpvar29;
62: int32_to_pack((char*) &WORK, 8, r0);
63: pack_to_zone((char*) r4+6, 2, (char*) &WORK, 8);
64: uint32_t addr31 = r4 + 7;
65: unsigned char tmp32 = * (unsigned char *) addr31;
66: unsigned char tmp33 = tmp32 & 0x0f;
67: unsigned char tmp34 = tmp33 | 0x30;
68: * (unsigned char*) addr31 = tmp34;
69: strncpy((char*) r4, (char*) r3, 6);
70: }
71: }
72: RET: ;
73: r15 = r15 - r15;
74: return;
75: }
76: int32_t EMONTH(void** param){
77: r1 = (uint32_t) param;
78: r13 = (uint32_t) savearea;
79: r14 = (uint32_t) &&RETURN;
80: EMONTHbb: ;
81: r12 = r15;
82: r15 = (uint32_t) SAVE;
83: uint32_t addr15 = r15 + 4;
84: * (uint32_t*) addr15 = r13;
85: uint32_t addr16 = r13 + 8;
86: * (uint32_t*) addr16 = r15;
87: r13 = r15;
88: r3 = * (uint32_t*) r1;
89: r4 = * (uint32_t*) (r1 + 4);
90: if (strncmp((char*) r4, "00000000", 6)) {
91: ER_FMT: ;
92: abend(999);
93: }
94: else {
95: FC_EOM: ;
96: EOMfunc();
97: }
98: RETURN: ;
99: return r15;

100: }

(a) Generated C program from the assembly of Fig. 2

1: #include <stdio.h>

2: #include <stdint.h>

3: #include <string.h>

4:

5: int32_t EMONTH(void **param);

6:

7: int main(void)

8: {

9: char gdate[] = "20141215";

10: char result[] = "00000000";

11: void* param[2] = {gdate, result};

12: int32_t rc = EMONTH(param);

13:

14: printf("rc = %d, result = \"%s\"\n", rc, result);

15: return 0;

16: }

(b) Test driver

Fig. 16. Resulting C program.

1063

