
ACAP: Binary Synthesizer
Based on MIPS Object Codes

Nagisa Ishiura
School of Science and Technology

Kwansei Gakuin University
2-1 Gakuen

Sanda, Hyogo, 669-1337, Japan
Email: nagisa.ishiura@ml.kwansei.ac.jp

Hiroyuki Kanbara
ASTEM RI

134 Chudoji Minamimachi
Shimogyo-ku, Kyoto, Japan 600-8813

Email: kanbara@astem.or.jp

Hiroyuki Tomiyama
College of Science and Engineering

Ritsumeikan University
1-1-1 Noji-Higashi

Kusatsu, Shiga 525-8577, Japan
Email: ht@fc.ritsumei.ac.jp

Abstract—This paper presents a binary synthesizer “ACAP,”
which synthesizes register transfer level HDL from MIPS object
codes. It has three operation modes; (1) a separate compilation
mode, in which selected subprograms of the target system are
synthesized into hardware, (2) a full synthesis mode, where a
whole linked executable code is transformed into a hardware
module, and (3) an accelerator synthesis mode, where user
specified sections of an executable code are converted into a
hardware accelerator which is tightly coupled with the CPU.
This paper describes several unique techniques adopted in ACAP,
focusing on how interface between software and synthesized
hardware is established.

I. INTRODUCTION

Embedded systems are getting increasingly rich in func-
tionalities. While large part of these functionalities are realized
by software running on embedded processors, critical parts, for
which real-time response or high-performance under limited
power consumption is required, must be implemented as
hardware. In order to meet the short time-to-market, efficient
methodologies are needed for designing systems consisting of
software and hardware.

High-level synthesis [1] is one of the most prevailing
techniques for this purpose, where systems’ specifications in
high-level behavioral languages, such as C, SystemC, etc., are
automatically compiled into a register transfer level hardware
models which are ready for logic synthesis. Several method-
ologies have been proposed to expedite hardware/software
codesign by utilizing high-level synthesis [2]–[4].

Binary synthesis [5] is a variant of high-level synthesis,
in which input behavior is given in the form of object codes,
instead of programs in high-level languages. The object codes
may result from programs in some programming languages
or from hand written assembly programs. Binary synthesis
can handle wider range of software codes than high-level
synthesis. Although the performance of the resulting hardware
is generally lower than those obtained by high-level synthesis,
due to lack of high-level information in the given programs,
binary synthesis is attractive for the purpose of converting part
of software into hardware.

This paper presents binary synthesizer “ACAP,” which
translates MIPS binary codes into synthesizable Verilog HDL
descriptions. It aims at converting critical parts of programs
into hardware which are originally intended to run on CPUs.
ACAP implements several unique techniques for this purpose
which take advantage of binary synthesis.

II. BINARY SYNTHESIS

Basic technologies for binary synthesis are not very much
different from those for high-level synthesis. CDFGs (control
dataflow graphs) are constructed from object codes instead of
programs written in high-level languages. Almost all of the
high-level synthesis techniques can be applied to the CDFGs
to generate hardware.

The merit of binary synthesis is that it has less restrictions
on input behavior specifications. For example, C programs
with pointers or complicated control structures can be synthe-
sized into hardware. Moreover, binary synthesizer may handle
programs in multiple languages or hand-written assembly
programs.

Mittal et al. [6] developed a binary synthesizer to translate
DSP binaries into FPGA hardware. It could accept programs in
C/C++, Matlab, and Simulink as well as hand-written assem-
bly. The binary synthesizer developed by Stitt et al. [5] could
synthesize selected sections of binary codes of MIPS, ARM,
and MicroBlaze into coprocessors, or hardware accelerators.
They also succeeded in enhancing the performance of the
binary synthesizer to the same level of high-level synthesis
by decompiling the given binary codes to recover high-level
constructs. The synthesized accelerators were activated from
the software running on the CPUs. Relatively simple interface
was adopted, where arguments and return values were passed
through global variables and the control was transferred by
polling. The interface was created by binary updating which
modifies the software binary code so that instructions for
interface would be inserted and corresponding adjustment of
instruction addresses would be done.

III. BINARY SYNTHESIZER ACAP

ACAP is a binary synthesizer that converts MIPS binary
codes into hardware equivalent in terms of the behavior. Fig. 1
illustrates the synthesis flow of ACAP. It takes a MIPS binary
code which may be generated by gas (an assembler) or gcc (a
C compiler). It recovers assembly programs via objdump (a
disassembler) and convert them into CDFGs. The conversion
is based on a simple method which substitutes each instruc-
tion into a series of atomic operations. The synthesis engine
performs optimization, scheduling, and binding, which are
based on typical high-level synthesis algorithms, and generates
Verilog HDL. We assume MIPS R3000 instruction set which
handles 32bit addresses and data. ACAP is implemented in

The 29th International Technical Conference on Circuit/Systems Computers and Communications (ITC-CSCC), Phuket, Thailand, July 1-4, 2014

725

L

+

+

<<

L

+

S

+

lwlw

addu

sll

sw

-32760-32756

-32764

...
lw v1,-32756(gp)
lw v0,-32764(gp)
nop
addu v0,v1,v0
sll v0,v0,0x2
sw v0,-32760(gp)
...

CDFG

CDFG generator

objdump

MIPS binary

gcc

C

optimization

scheduling

binding

Verilog
HDL

RTL IR

composer

library info
gas

asm

Fig. 1. Flow of synthesis in ACAP.

(1) separate compilation mode

(3) accelerator synthesis mode

(2) full synthesis mode

MIPS

main
f1
f2

IM DM
DM

HW (f1, f2)

MIPS

main
f1
f2

IM

HW

DM

main

MIPS HW
(f2)

IM DM

HW
(f1)

Fig. 2. Three synthesis modes of ACAP.

Perl5 and runs on Unix systems (including Cygwin and Mac
OSX).

ACAP has three operation modes, as illustrated in Fig. 2,
which generates different types of hardware from different
types of inputs.

(1) Separate compilation mode

Subprograms chosen by users (f1 and f2 in Fig. 2) are
synthesized into hardware (HW(f1) and HW(f2), respec-
tively) which work like the original subprograms; they share
the memory space with the CPU and are callable from the
software part. The programs are assumed to be written in C,
though the synthesizer engine works on object codes, and the
interface between software and hardware is arranged by source
code level transformation on the input C programs.

(2) Full synthesis mode

A linked executable code is compiled into a hardware
module whose behavior is equivalent to the code running on
the CPU.

(3) Accelerator synthesis mode

Some selected sections in a linked executable code are
synthesized into a hardware accelerator (HW(f1,f2) in the
figure) which is tightly coupled with the CPU. The accelerator
shares the register file as well as the main memory with
the CPU and transfers the control and the data from/to CPU
extremely quickly.

Both (1) and (3) aim at converting critical parts of pro-
grams, which are originally developed to run on CPUs, into
hardware.

(a) Main file

(c) Stub for sub

(a) Sub file

sub_SW.c

extern int v;
volatile int _RUN_sub;
int _ARG_f_a, _RET_f;
int _ARG_g_x, _RET_g;
#define CALL_f 1
#define CALL_g 2

int f(int a) {
 _ARG_f_a = a;
 _RUN_sub = CALL_f;
 while (_RUN_sub) { ; }
 return _RET_f;
}

int g(int x) {
 _ARG_g_x = x;
 _RUN_sub = CALL_g;
 while (_RUN_sub) { ; }
 return _RET_g;
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

sub.c

extern int v;

int f(int a) {
 ...
 return r;
}

int g(int x) {
 ...
 return y;
}

1
2
3
4
5
6
7
8
9

10
11

main.c

int v;
int f(int a);
int g(int x);

int main(void) {
 ...
 s = f(p+2);
 t = g(s);
 ...
}

1
2
3
4
5
6
7
8
9

10

(d) Input to syntesizer

(e) Main for relinking

(f) Stub for relinking

main2.c

iint v;
int f(int a);
int g(int x);

int _main(void) {
 ...
 s = f(p+2);
 t = g(s);
 ...
}

int main(void) {
 _INIT_sub();
 return _main();
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

extern int v;
void* volatile _RUN_sub;
int _ARG_f_a, _RET_f;
int _ARG_g_x, _RET_g;
#define CALL_f ((void*) 1)
#define CALL_g ((void*) 2)

void INIT_sub(void) {
 void* volatile addr_table[]=
 {
 &v,
 &_ARG_f_a, &_RET_f,
 &_ARG_g_x, &_RET_g,
 };
 _RUN_sub = (void*) addr_table;
 while(_RUN_sub){ ; }
}

int f(int a) {
 _ARG_f_a = a;
 _RUN_sub = CALL_f;
 while (_RUN_sub) { ; }
 return _RET_f;
}

int g(int x) { ... }

sub_SW2.c

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

(g) HW functions for relinking

sub_HW.c

extern int v;
extern volatile int _RUN_sub;
extern int _ARG_f_a, _RET_f;
extern int _ARG_g_x, _RET_g;
#define CALL_f 1
#define CALL_g 2

int f(int a) {
 ...
 return r;
}

int g(int x) {
 ...
 return y;
}

nt main(void) {
 for (;;) {
 while (!_RUN_sub) { ; }
 if (_RUN_sub == CALL_f) {
 _RET_f = f(_ARG_f_a);
 }
 else if (_RUN_sub == CALL_g) {
 _RET_g = f(_ARG_g_x);
 }
 _RUN_sub = 0;
 }
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

sub_HW2.c

extern volatile int _RUN_sub;
#define CALL_f (void*) 1
#define CALL_g (void*) 2

int f(int a) {
 ...
 return r;
}

int g(int x) {
 ...
 return y;
}

int main(void) {
 while (!_RUN_sub) { ; }
 int *_v = *((int**) _RUN_sub + 0);
 int *_arg_f_a = *((int**) _RUN_sub + 1);
 int *_ret_f = *((int**) _RUN_sub + 2);
 int *_arg_g_x = *((int**) _RUN_sub + 1);
 int *_ret_g = *((int**) _RUN_sub + 2);
 _RUN_sub = (void*) 0;

 for (;;) {
 while (!_RUN_sub) { ; }
 if (_RUN_sub == CALL_f) {
 *_ret_f = f(*_arg_f_a);
 }
 else if (_RUN_sub == CALL_g) {
 *_ret_g = f(*_arg_g_x);
 }
 _RUN_sub = (void*) 0;
 }
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

Fig. 3. Source code transformation for separate compilation mode.

IV. SEPARATE COMPILATION MODE

A. “Module per file” synthesis

In the separate compilation mode, we assume that a target
system is composed of multiple C program files, which are
compiled to object codes, linked together as a binary program,
and run on a CPU. Then, a user decides to convert some
of the program files into hardware. Each file, which may
contain single or multiple functions, is synthesized into a single
hardware module.

While Stitt’s method [5] needed binary level code modifi-
cation to establish interface between software and hardware,
ACAP does the equivalent task in source code level, leaving
the complicated relocation tasks to a linker [8].

The 29th International Technical Conference on Circuit/Systems Computers and Communications (ITC-CSCC), Phuket, Thailand, July 1-4, 2014

726

Fig. 3 shows an example of our code modification. A main
file (a) is run on MIPS while a sub file (b), which contains
functions f and g, will be synthesized into a hardware module.
For this purpose, the sub file (b) is converted into two files (c)
and (d), where the former is linked with the main file (a) and
run as software while the latter is an input to the synthesizer.

The file (c) is a stub file; when function f is called from
(a), the stub function f (in lines 8–13) is executed, which
stores the argument to global variable _ARG_f_a and instruct
the hardware to run the body of f by setting the function
ID to _RUN_sub. On detecting the completion of hardware
(when _RUN_sub becomes zero), it forwards the return value
in _RET_f to the caller.

The file (d) is the hardware counterpart of (c). Shown in
lines 19–28 is the main loop of the hardware behavior. It polls
variable _RUN_sub and branches to the function specified in
the variable.

Note that the three functions in (d) will be merged into a
single hardware module during the synthesis [10]. A function
call compiles into “JAL address” instruction. This is translated
into an operation to save the return state, instead of the return
address, into register ra, and an operation to set the next
state to the one corresponding to the jump address. A return
statement is translated to “BR ra” (branch to the address in
ra), which is synthesized into an operation to alter the state
variable. Passing of arguments and return values is converted
into proper instruction sequences by a C compiler, so the
binary synthesizer have only to translate them faithfully.

However, the addresses of the global variables must be
known during synthesis of (d). They are acquired from the
symbol table emitted by a linker when linking (a) and (c).
The binary synthesizer patches in the addresses before logic
synthesis.

B. Synthesis of relinkable hardware

In the method described in the previous subsection, logic
synthesis must be re-run every time the addresses of global
variables change due to modification on the software part, even
though there is no change on the hardware part. For the same
reason, the hardware must be resynthesized when one want to
link the hardware with different main routines.

In ACAP, the software transformation method is further
enhanced so that it can synthesize relinkable hardware, which
can be relinked with modified software or different software
without resynthesis [9]. This is achieved by passing an address
table from software to hardware which contains the necessary
global variables’ addresses.

In Fig. 3, the main program (a) is transformed into (e); the
main function calls initialization routine INIT_sub which
creates the address table and passes it to the hardware. The
hardware part (b) is transformed into (f) and (g). The address
table is prepared in INIT_sub in (f) and received at the
beginning of main in (g).

V. ACCELERATOR SYNTHESIS MODE

The accelerator synthesis mode compiles selected part of
a binary code into a hardware accelerator tightly coupled with
the CPU, where the transfer of the control and data between
CPU and accelerator is extremely efficient [11], [12].

Fig. 4 shows how the synthesized accelerator works. The
accelerator watches PC (via a) and starts execution as soon as
the PC hits one of the the starting addresses of the hardware
sections. While the accelerator is running, it deactivates CPU
by feeding the same address to PC (via b) and NOP to IR (via
c). The accelerator reads and writes the register file of the CPU
directly or through the forwarding unit (via d, e, and h). It also
accesses the same address space as that of CPU (via f and g).
When the accelerator is about to finish its task, it writes the
address to resume software execution into PC. Note that this
PC write is done as early as possible to reload the instruction
pipeline but not too early to interfere with the register/memory
accesses of the remaining operations in the accelerator.

The input to this synthesis mode is a linked executable
code. The sections to be synthesized are specified by users by
inserting pragmas into the disassembled code. The synthesis
method for this mode is very similar to the one in the previous
section. However, register read operations (to get values from
general purpose registers of the CPU) must be inserted to the
hardware DFG at the point where the registers are first read
in the hardware section. The same handling is necessary for
register writes, at the end of the hardware section. However,
if we do this insertion of register read/write operations DFG
by DFG, it will results in many redundant operations. So we
execute data flow analysis and delete unnecessary read/writes
[14].

The strength of this accelerator is that switching between
CPU and hardware is ultimately quick. There are no need for
coprocessor instructions nor data transfer instructions, and the
operations of the CPU and hardware are seamlessly executed.

The accelerator mode allows higher freedom in choosing
the part of the programs to be synthesized. A hardware section
should not necessarily be a function. It can be any consecutive
sequence of instructions so that users can specify a loop or just
a sequence of several instructions. The accelerator mode allows
multiple sections as well as a single section and various types
of control transfer to be synthesized into an accelerator [13].
It is possible to jump from hardware to hardware as well as
from hardware to software. It is also possible to jump from
the middle of a hardware section and jump into a hardware
section. The accelerator can even call software functions. This
is useful in processing data intensive tasks by hardware and
letting software handle errors, or making system calls from
hardware.

Linked executables, from which synthesis of this mode
starts, include library codes such as string manipulation, multi-
precision and soft float runtime libraries, etc., and they can
also be synthesized. Thus, we could even accelerate floating
point operations with a datapath equipped only with fixed point
arithmetic units.

Another merit of this synthesis mode is that there is no
need to alter binary codes nor need to modify compilers at all.
Desired part of the executable code can be accelerated even if
it resides in an ROM.

Experimental results of this synthesis mode are summa-
rized in TABLE I. “AES” is an encryption program and the
other two are from the CHStone [7]. In each benchmark
program, the most frequently called function was synthesized
into an hardware accelerator. The MIPS CPU consisted of
3,211 slices and its register to register delay was 26.0ns (as in

The 29th International Technical Conference on Circuit/Systems Computers and Communications (ITC-CSCC), Phuket, Thailand, July 1-4, 2014

727

IF/ID

RF

ID/EX

ALU

EX/MEM

DMem

MEM/WB

FWU

Accelerator

PC IMem

+4
jmp addr calculation

ab c d f ge h

MIPS

Fig. 4. Interaction between MIPS and accelerator [12].

TABLE I. SYNTHESIS RESULTS [14].

prog HW slice cycle delay [ns]
AES MIPS only 3,221 (1.00) 47,953 (1.00) 26.0

MIPS+ACC 4,643 (1.44) 32,353 (0.67) 28.6
SHA MIPS only 3,221 (1.00) 746,649 (1.00) 26.0

MIPS+ACC 7,642 (2.37) 250,125 (0.33) 42.9
Blowfish MIPS only 3,221 (1.00) 761,878 (1.00) 26.0

MIPS+ACC 7,310 (2.27) 375,448 (0.49) 62.3

The target was Xilinx Spartan-3E FPGA and the synthesizer was Xilinx ISE 12.4.

the “MIPS only” rows). Since the delay of an ALU was about
7.0ns, three level chaining was performed using 9 ALUs. As
shown in the “MIPS+ACC” rows, the accelerators reduced the
total execution cycles into 33% to 67% at the cost of hardware
increase by 1.44 to 2.27 times. Although the delays were much
larger than that of MIPS, all of them were confirmed to be from
false paths which would never be activated and the actual delay
would be as much as 26 to 30ns.

VI. CONCLUSION

Some technical features of ACAP has been introduced
focusing on how interface between software and synthesized
hardware is established. Binary synthesis seems to be a promis-
ing tool to bridge between software and hardware. Currently,
ACAP is not very good at performance in terms of the
speed and area of synthesized hardware. We are continuingly
working on improving the usability and performance of ACAP.

ACKNOWLEDGMENT

We would like to express our thanks to all the people who
have contributed to develop ACAP; Mr. Tatsuya Ikegami, Mr.
Yoshitaka Iritani, Mr. Yuki Toda, Mr. Makoto Orino, Mr. Fu-
miaki Takashima, Mr. Shunsuke Satake, Mr. Shimpei Tamura,
who were with Kwansei Gakuin University, Mr. Naoya Ito, Mr.
Hinata Takebayashi, who are with Kwansei Gakuin University,
Mr. Takayuki Nakatani who were with Ritsumeikan University,
and Masaharu Yano, who were with Kyoto University.

REFERENCES

[1] D. D. Gajski, N. D. Dutt, A. C-H Wu, and S. Y-L Lin: High-Level
Synthesis: Introduction to Chip and System Design, Kluwer Academic
Publishers (1992).

[2] S. L. Shee, S. Parameswaran, and N. Cheung: “Novel architecture for
loop acceleration: A case study,” in Proc. CODES+ISSS ’05, pp. 297–302
(Sept. 2005).

[3] S. Shibata, S. Honda, H. Tomiyama, and H. Takada: “Advanced System-
Builder: A tool set for multiprocessor design space exploration,” in Proc.
ISOCC 2010, pp. 79–82 (Nov. 2010).

[4] K. Seto and M. Fujita: “Custom instruction generation for configurable
processors with limited numbers of operands,” in IPSJ Trans. on System
LSI Design Methodology, vol. 3, pp. 57–68 (Feb. 2010).

[5] G. Stitt and F. Vahid: “Binary synthesis,” ACM Trans. on Design
Automation of Electronic Systems, vol. 12, no. 3, article 34 (Aug. 2007).

[6] G. Mittal, D. C. Zaretsky, X. Tang, and P. Banerjee: “Automatic transla-
tion of software binaries onto FPGAs,” in Proc. DAC 2004, pp. 389–394
(June 2004).

[7] Y. Hara, H. Tomiyama, S. Honda, H. Takada, and K. Ishii: “CHStone:
A benchmark program suite for practical C-based high-level synthesis,”
in Proc. ISCAS 2008, pp. 1192–1195 (May 2008).

[8] (in Japanese) Y. Iritani, T. Ikegami, N. Ishiura, H. Kanbara, and H.
Tomiyama: “Implementation of a high-level synthesis system which uses
MIPS assembly programs as intermediate representation,” in IPSJ SIG
Technical Report, 2010-SLDM-144-58 (Mar. 2010).

[9] (in Japanese) M. Orino, N. Ishiura, H. Tomiyama, F. Takashima, and H.
Kanbara: “High-level synthesis of hardware relinkable to software,” in
Technical Report of IEICE, VLD2011-107 (Jan. 2012).

[10] (in Japanese) F. Takashima, N. Ishiura, M. Orino, H. Tomiyama, and
H. Kanbara: “Merge of functions in high-level synthesis using assembly
codes as intermediate representation,” in Technical Report of IEICE,
VLD2011-106 (Jan. 2012).

[11] (in Japanese) Y. Toda, N. Ishiura, H. Kanbara, and H. Tomiyama:
“Hardware/software co-design based on coprocessor tightly coupled with
CPU,” in IPSJ SIG Technical Report, 2010-EMB-15-16 (Jan. 2010).

[12] (in Japanese) N. Ito: Fast Execution switching between CPU and Hard-
ware Accelerators, Bachelor Thesis, School of Science and Technology,
Kwansei Gakuin University (Mar. 2014).

[13] (in Japanese) S. Satake, N. Ishiura, S. Tamura, H. Kanbara, H.
Tomiyama: “Speeding up multiple sections of binary code by hardware
accelerator tightly coupled with CPU,” in Technical Report of IEICE,
VLD2012-119 (Jan. 2013).

[14] (in Japanese) S. Tamura, N. Ishiura, H. Kanbara, H. Tomiyama: “Binary
synthesis of hardware accelerator tightly coupled with CPU,” in Technical
Report of IEICE, VLD2013-133 (Jan. 2014).

The 29th International Technical Conference on Circuit/Systems Computers and Communications (ITC-CSCC), Phuket, Thailand, July 1-4, 2014

728

