
Model Based Parallelization from the Simulink Models and Their
Sequential C Code

Takahiro KUMURA†1†2, Yuichi NAKAMURA†2, Nagisa ISHIURA†3,
Yoshinori TAKEUCHI†1, Masaharu IMAI†1

†1 Osaka University, Yamadaoka 1-5, Suita City, Osaka, 565-0871, Japan
†2 NEC Corporation, Shimonumabe 1753, Nakahara-ku, Kawasaki City, 216-8666, Japan
†3 Kwansei Gakuin University, 2-1 Gakuen, Sanda City, Hyogo, 669-1337, Japan

Abstract— This paper proposes a method to gener-

ate parallel C codes suited to pipeline processing from

schematic models developed on the Simulink, which

is a model-based development tool. The Simulink

is widely used in the field of control systems for

ranging from algorithm development to code gener-

ation for embedded systems. Although there are sev-

eral researches which focus on parallelization based

on Simulink models, they exploit parallelism mainly

within one step processing of the models, or among

mutiple-step processing by ignoring inter-step data

dependencies. Here, one step processing means that

a model processes an input signal and calculate an

output signal. In order to exploit more parallelism

among multiple-step processing while preserving the

original semantics of the model, this paper focuses

on a pipeline processing based on a way of apply-

ing the theory of communicating sequential processes

(CSP). Under the parallelization process, the pro-

posed method eliminates loop structures in models

and builds directed acyclic graphs (DAGs) suited to

a pipeline processing. While data items are trans-

ferred through communication on the CSP, they are

stored and shared in double buffers on the proposed

method. On the experiment of applying the method

for an audio processing model, the execution time of

the parallelized code could be reduced successfully to

26.3% on a 4-core processor running at 400MHz with

a symmetric multi-processing real-time operating sys-

tem, compared with that of the sequential code.

I. Introduction

Multicore processors have been becoming popular to
increase their performance in the field of PCs and em-
bedded systems. For example, communication infrastruc-
tures such as mobile base stations work on heterogeneous
and/or homogeneous multicore processors to handle radio
signal and packets of many users. Furthermore, multi-
core processors are also used for encoding, decoding, and
image processing on high definition televisions, and are
evaluated for car navigation systems. Behind this trend
focused on multicore, there is a story that multicore is be-

coming one of key technologies to increase processors’ per-
formance since increasing processors’ operating frequency
is more and more difficult and requires much power. This
movement toward multicore is remarkable in the field of
communication infrastructures, which require higher pro-
cessing performance than in other fields.

To exploit the inherent performance of multicore pro-
cessors, it is very important to parallelize software work-
ing on them. However, parallelization makes it difficult
to develop software since parallelization requires adequate
workload balancing and access controlling of shared re-
sources [3]. To ease parallelizing software, so far there
have been many researches of parallel languages, frame-
works, and compilers, etc. [1, 2]. Recent examples are
GPU-oriented frameworks such as CUDA and OpenCL
to exploit data parallelism in which same calculations are
performed for many pixels, and the Intel C/C++ compiler
that has features such as automatic loop parallelization
and automatic vectorization.

To take advantage of task parallelism, which is another
aspect for parallelism, parallelization methods based on
dataflow and pipeline processing have also been actively
researched [4, 6]. For example, StreamIt [4] is a research
project on a source-to-source compiler for stream process-
ing, which handles continuous data streams such as au-
dio and video signals. Programmers describe pipelines
in the language of the StreamIt for dataflow of stream
processing, then the StreamIt compiler generates source
codes that make every stage of the pipelines work in par-
allel. For another example, Molatomium [6] is a research
project that also focuses on dataflow.

While these novel frameworks based on dataflow and
pipeline processing are very useful for parallelizing soft-
ware developed from scratch, they have a problem in
terms of translation from conventional languages. To cure
this problem, we focus on the Simulink, a model develop-
ment tool, which is widely used in a model-based develop-
ment method spreading recently in the field of control sys-
tems. Models developed on the Simulink are widely used
in the field of control systems for raging from algorithm
development to code generation for embedded systems.
Simulink models are just dataflow graphs themselves, and
are suited to parallelization since they represent structural

SASIMI 2012 ProceedingsR2-8

- 186 -

parallelism visually in them. If parallel software can be
generated from existing models developed on the popular
Simulink, language translation by hand should never be
needed to make software parallel.

There are several activities by the MathWorks and oth-
ers in terms of Simulink models and parallelization [7–11].
The MathWorks, a developer of the Simulink, provides
Parallel Computing Toolbox (PCT) as his own product
before, which allows programmers to run large-scale mod-
els for simulation in parallel. On the latest version of the
C code generation tool from the Simulink models, internal
processing of individual blocks such as FFT and filters is
parallelized. Although there have been several other re-
searches and products for generating parallel code from
Simulink models [9–11], programmers on these researches
and products have to take charge of making tasks and
allocating tasks to CPUs. One of conventional research
extracts parallelism only from one-step processing of mod-
els [7]. Here, one step processing means that a model
processes an input signal and calculate an output signal.
Another research extracts parallelism among multiple-
step processing by ignoring inter-step data dependencies,
which may cause acceptable numerical errors [8]. The first
one has an issue of less parallelism, and the second one
has an issue of trade-off between obtained parallelism and
numerical error.

This paper proposes a method to generate parallel C
code from the Simulink models, in which we aim to ex-
tract parallelism from multiple-step processing without
ignoring inter-step dependencies. Specifically, the method
transforms a model having feedback loops to a directed
acyclic graph (DAG) while preserving the original seman-
tics of the model, and executes every node of the DAG
concurrently on the basis of the theory of communicat-
ing sequential processes (CSP) [12]. While the theory of
CSP transfers data items through communication, which
may cause data copies from buffer to buffer, the proposed
method shares data items by using double buffers placed
at shared memories. The contribution of this work is the
CSP-based method using double buffering in combina-
tion with the loop structure decomposition for pipeline
processing, and the evaluation of the proposed method.
In the rest of this paper, the proposed method is de-
scribed, and then parallelization experiment is explained.
Finally, this paper shows that as a result of parallelizing
an audio equalizer model on a 4-core processor running
at 400MHz the proposed method reduces execution time
down to 26.3% through parallelization.

II. Parallel C code generation from Simulink
models

This paper proposes a method to generate parallel C
code from Simulink models on the basis of the theory of
CSP and regarding blocks in Simulink models as tasks
and lines between blocks in Simulink models as commu-

��������

�	
�	�����

�
���	

�
��

��
�	

�
�

�

��
	

�	
�	

��
���

�

��

��

��������
���	��	����	
���	�

�����	����
�����
��	������

���
��	�����
����
��������	�

��������
���	�

������	�
�
���	

�	�	������
������	�
�
���	

���������
���	� ���������
�
���	

Fig. 1. The process to generate parallel C code from a Simulink
model.

nication channels. Figure 1 shows a process to generate
parallel C code from Simulink models. Underling concepts
of the proposed method are described below.

Mapping a block in a model to a task: The pro-
posed method regards the processing of a block in a
Simulink model as a task, and a dataflow graph repre-
sented with blocks and lines of a Simulink model as a data
dependency graph of tasks, respectively. Then behavior
of each task is retrieved from the sequential C code gener-
ated from a Simulink model by the Real-Time Workshop,
which is a Simulink component.

Signaling completion of tasks with synchronized
task communication: In the theory of CSP, processes
running concurrently communicate via synchronized mes-
sage passing. The proposed method makes the tasks run
concurrently while communicating based on the data de-
pendency graph extracted from a Simulink model. The
proposed method uses synchronized task communication
as a means to notify completion of tasks to each other. An
event of completion of task calculation is transmitted to
other tasks via synchronized task communication, and the
tasks that receive the event begin their own calculation.
During synchronized task communication, tasks wait un-
til the communication partners become ready. Figure 2
shows the task execution flow. Each task repeats the fol-
lowing steps: (1) receiving events to know completion of
ascending tasks that feed input data to this task, (2) cal-
culating output data, and (3) sending events to notify
that output data is ready to descending tasks that uses
the output data. Tasks communicate using application
programming interfaces (APIs) for handling semaphores,
events, or messages available on a target platform. These
APIs may cause context switches and another task will be-
come ready to run if synchrnous communication between
tasks is suspended because one of tasks is not ready.

- 187 -

���
�������	

���	 �
�
��
���
 ��
�	����	

��
���

���
����!�� �	

�! �!
�� ��

���
��	��	

���	 �
 �
���
 ��
�!
��	

��
���

��
�	

�	�

��
��	� ��	
���	

��������
"��

	�

Fig. 2. The flow chart of task execution.

Pipeline parallel processing using double buffers
for task output data: On the proposed method, tasks
obtain the calculation results of other tasks from shared
memories but not from task communication. Although
the theory of CSP transfers the calculation results of tasks
through task communication, task communication is not
adequate for large data transfer since it is necessary to
transfer data from the buffer storing the calculation re-
sults to the buffer for task communication. The data
copies from buffer to buffer could be a problem when large
data items are transferred through task communication.
To avoid the data copies from buffer to buffer, the pro-
posed method transfers a buffer index via task commu-
nication, and shares data items among tasks via double
buffers storing calculation results of tasks. The buffer in-
dex transferred from task to task represents which buffer
to be used. When a large amount of data of a task is
fed to multiple descending tasks, the proposed method
write the output data to shared memory one time, while
the original CSP requires data copy the number of de-
scending tasks. Using double buffers to store task outputs
and switching the buffers alternately allow data-producer
tasks and data-consumer tasks to work in parallel simul-
taneously. In this way, costly data copies between buffers
can become needless in the proposed method.

Although Simulink can work with various models,
the proposed method handles only models subjected to
the following restrictions: fixed time step, discrete-time
solver, and single signal rate. These restrictions make
analyzing C code simple, and are acceptable ones for de-
veloping practical Simulink models.

III. Analyzing C code

The proposed method analyzes two files generated from
the Real-Time Workshop: model.c and model.h. The file
of model.c contains the following three functions:

model_step()
executing a single step of the target model.

model_initialize()
initializing the internal status of the target model.

model_terminate()
terminating the processing of the target model.

In these functions, the function to be parallelized is
model_step(). The proposed method breaks the content
of the function of model_step() into code blocks sepa-
rated by comment tags that represent which code block
comes from which Simulink block. The comment tags are
inserted by the Real-Time Workshop for code tracing be-
tween Simulink models and C code, and make it possible
to find one-to-one relationship between code blocks and
model blocks. In the file of model.c, all variables and ar-
rays to store output data of model blocks are put together
into a single structure. Each of these variables and arrays
are read also as input data. The aggregated structure
makes it easy to duplicate the structure for double buffer-
ing. The header file of model.h contains input and output
data structures of model blocks and a list of subsystem
names included in the target model. A subsystem is a
group of blocks, and is one level of hierarchy in models.

IV. Analyzing model

The proposed method reads the model file model.mdl,
analyzes it, and finds its hierarchical structure and con-
nection of blocks. Simulink models have a hierarchy of
blocks. A subsystem, which is a group of blocks, forms
one level of hierarchy and can contains other subsystems.
In the files of Simulink models, information on block con-
nection is recorded individually for every level of block
hierarchy. In order to generate parallel C code, it is neces-
sary to get block connection information between different
levels of block hierarchy.

V. Flattening block hierarchy

The proposed method builds an intermediate model,
which becomes a task dependency graph to generate par-
allel C code. In the building process of an intermediate
model, to take advantage of the inherent structural par-
allelism represented in Simulink models that have hierar-
chical structures, the proposed method flattens the hier-
archical structure of model blocks. Target model blocks
for this flattening are subsystem blocks that do not have
any binding to code blocks extracted from the sequen-
tial C code. After the flattening, input and output port
blocks included in such subsystem blocks are connected
to external model blocks outside the subsystem blocks.

VI. Breaking loop structures

Several Simulink models have loop structures. Here, a
loop structure means a feedback loop but neither a for-

- 188 -

���

����

��� ����

��� ���

������ ����

��� ���

������

	��
��� �
���	�

��

	�������
���	�
���������
���

��������	�

��

�����	�
���	�
���
����������
���

��������	�

���	����	

����
�	
	��	����

���� ����

Fig. 3. How to break a loop structure.

loop nor a while-loop. Loop structures prevent the pro-
posed method from determining the execution order of
model blocks in the intermediate models, and make par-
allelization difficult. To cure this problem, the proposed
method breaks loop structures that exist in the interme-
diate models by dividing indirect-feedthrough blocks such
as delay element blocks and integral blocks in loop struc-
tures while preserving the original semantics of Simulink
models. Output data yn and internal status in an indirect-
feedthrough block are calculated as follows:

Output: yn = f(statusn−1) (1)
Update: statusn = g(xn) (2)

In a usual design guideline of Simulink models, there
must be indirect-feedthrough blocks somewhere in usual
loop structures of Simulink models. Taking advantage
of the fact that indirect-feedthrough blocks can calculate
output data yn by using only internal status without us-
ing their input data xn, as shown in Figure 3, an indirect-
feedthrough block can be divided into two blocks: an out-
put calculation block and a status update block. After
this process of breaking loop structures, a DAG in terms
of tasks and their data dependency is obtained from the
modified intermediate model. The specific steps for di-
viding an indirect-feedthrough block are as follows.

(1) Dividing a delay element block into two blocks:
The proposed method finds indirect-feedthrough blocks,
and divides such a delay element block into an output cal-
culation block and a status update block. The status up-
date block takes over the incoming edges of the indirect-
feedthrough block, and the output calculation block takes
over the outgoing edges of the indirect-feedthrough block.

(2) Adding an edge from the start block to an out-
put calculation block: The proposed method creates
the start block that starts the processing of the target
model, adds an edge from the start block to the output

calculation block. The edge added here means that the
output calculation block does not have any data depen-
dency from the other model blocks and it can calculate
its output data using its own internal status.

(3) Adding an inter-step data dependency edge
from a status update block to an output calcu-
lation block: Since the internal status updated at the
current time step in the status update block will be used
in the output calculation block at the future time step,
there is a data dependency from the status update block
at time step n to the output calculation block at time
step n + 1. This dependency is one between different
time steps, and this paper calls such a dependency as an
inter-step data dependency. The proposed method adds
an edge for this inter-step data dependency from the sta-
tus update block to the output calculation block. The
inter-step data dependency edge is used only for deter-
mining if a model block becomes ready for execution at
run time but not for determining the execution order of
model blocks before run time. The modified intermediate
model in this way becomes a directed acyclic graph by
ignoring edges of inter-step data dependency.

VII. Generating Parallel C code

After building an intermediate model for the target
model, the proposed method generates parallel C code
based on the intermediate model. Nodes and edges in the
intermediate model are translated to tasks and task com-
munications, respectively, and the generated parallel code
includes the following three functions. These functions
correspond to ones in the sequential C code generated
from the target Simulink model.

model_step_parallel()
model_initialize_parallel()
model_terminate_parallel()

These functions are to be invoked from the task
corresponding to the start block. The function
of model_initialize_parallel() starts up all the
tasks for the target model. The function of
model_step_parallel() sends a calculation completion
event to the tasks corresponding to the model blocks that
are connected to the start block, and then returns without
waiting for the completion of the tasks. Tasks receiving
the event sent from the start task calculate their output
data, and send another event to their descending tasks.
The function of model_terminate_parallel() sends a
terminate event to running tasks and returns. Tasks re-
ceiving a terminate event immediately come to a halt.

The proposed method does not have any rules in terms
of (a) task assignment onto CPUs and (b) task scheduling,
and those two features are up to the operating systems.
In this paper, (a) and (b) are provided by a symmetric
multi-processing (SMP) operating system.

- 189 -

TABLE I
Experiment results of generating parallel C code from

Simulink models.

Model Tasks Execution time ratio
blocks compared with

sequential programs.
PC0 PC1 RTOS

Audio equalizing 252 57 85.8% 38.3% 26.3%
Lane detection 302 64 94.9% 44.3% 39%

MATLAB/Simulink version: R2010b
Experiment environment: PC0 and PC1

OS: Windows Server 2008
processor: Xeon@1.83GHz (4 cores)
compiler: Intel C++ Compiler XE 12.1
compiler options: /O2 /Qparallel
task communication: Win32 API
PC0 does not use the proposed method.
PC1 use the proposed method without compiler option /Qparallel.
∗ Scores of PC0 and PC1 are the execution time ratio
against PC0 without option /Qparallel.

Experiment environment: RTOS
OS: eSOL eT-Kernel Multi-Core Edition (SMP) [15]
processor: NaviEngine ARM11 MPCore@400MHz (4 cores)
compiler: ARM RealView Compiler 3.0
compiler options: -g -O3
task communication: message buffers (no queues, no time out)

VIII. Experiment

To investigate how effective the proposed method
works, in this section, experiment results are described
for generating parallel C code from two Simulink mod-
els [13,14]. The target environments to execute generated
C code are a PC running the Windows operating system
and an embedded system running a real time operating
system (RTOS). The details of the environments and re-
sults of the experiment are shown in Table I.

A. Audio equalizing

Audio equalizing in the model of [13] is an audio pro-
cessing that reads audio signals from a file and modifies
their waveform in both time and frequency domains. The
audio signals are stereo and 16 bits/sample, and their
sampling rate is 44.1kHz. Each of signals is represented
as a 32-bit floating-point number. The audio equalizing
model used in this experiment performs audio processing
for a 1024-sample audio frame at a time.

Figure 4 shows a task dependency graph extracted from
the audio equalizing Simulink model. Since the PC used
in this experiment has 4 CPUs, the execution time of
parallelized programs could be ideally decreased down to
1/4=25%. For the experiment on the Windows PC, the
execution time of the parallelized program using the pro-
posed method is reduced to 38.3% compared with a se-
quential program before parallelization while the execu-
tion time ratio of the program parallelized automatically
by the Intel Compiler is 94.9%. For the experiment on the
RTOS system, the execution time of the program paral-
lelized by the proposed method is reduced to 26.3%, which
is very close to the ideal case.

B. Lane detection

Lane detection in the model of [14] is an image process-
ing that detects car lanes from roadway images captured

���

���

���

���

���

��	

���

���

��

���

���

���

��	

���

���

���

���

��	

���

���

���

���

���

��

���

���

��

���

���

�
	

�
�

�
�

�
�

�

�
�

�
�

�
�

��	

���

���

���

���

���

��

���

���

���

���

���

���

��� ��

���

���

���

��	�

�	

• Node tN represents a task.
• Node t0 is a main task, which corresponds to the beginning block

and invokes such functions like model step parallel().
• Edges between nodes represent data dependencies of tasks.
• Dashed edges between nodes represent inter-step data dependen-

cies of tasks, which are the dependencies between different time
steps.

Fig. 4. Task dependency graph extracted from the audio
equalizing model.

Fig. 5. Task dependency graph extracted from the lane detection
model.

by a camera in a car, tracks the detected lanes, and makes
alert messages if the car is going to be out of the lanes.
The size of the roadway images is 360 x 240 pixels. Hough
transformation is used for detecting car lanes, and kalman
filtering is used for tracking the detected lanes. Pixels in
the image processing of this lane detection are represented
as 32-bit floating-point numbers.

Figure 5 shows a task dependency graph extracted from
the lane detection Simulink model. For the experiment on
the Windows PC, the execution time of the parallelized
program using the proposed method is reduced to 35%
compared with a sequential program before paralleliza-
tion, while the execution time ratio of the program paral-
lelized automatically by the Intel Compiler is 85.8%. For
the experiment on the RTOS system, the execution time
of it has been reduced to 39%. On both of the PC and
the embedded system that does not have any display de-
vice, any of result images were not displayed for the sake
of profiling on different systems under the similar condi-
tions.

- 190 -

N
u
m

.
o
f
ta

sk
s.

��

��

�

�
�
�
�
 �
 �
 �
�
�
�
 �
�
�
�
�

��

��

��

��

	�

�

 ��

 ��

 ��

 ��

 	�

 ��

 ��

 ��

 ��

 ���

Task execution time ratio over the maximum task execution time.

Fig. 6. Histogram of task execution time ratio for the audio
equalizing.

IX. Discussion

As shown in the experimental results in Table I, the pro-
posed method has worked effectively for the audio equal-
izing model, for which the execution time was reduced to
26.3% on the RTOS system. This result is very close to
the ideal case for a 4-core processor. For the lane detec-
tion model, on the other hand, the execution time was
reduced to 39% on the RTOS system. This section dis-
cusses this result.

One problem comes from a structure of task depen-
dency graph. The task dependency graph of the audio
equalizing model shown in Figure 4 has a simpler straight-
forward structure than that of the lane detection model
shown in Figure 5. This difference of task dependency
graphs in terms of their structure results in the difference
of performance in Table I. In Figure 5, there are more long
edges than in Figure 4. If there is a long edge between
two nodes A and B and there is another path from node
A to node B via other nodes, the nodes on the another
path are difficult to be parallelized in a pipeline manner
because node A cannot finish its task until node B starts
its task. Remember each node works in the way shown in
Figure 2.

Another problem is task granularity. Figures 6 and 7
show distribution of task execution time ratios for the
audio equalizing and the lane detection, respectively. In
these figures, a task execution time ratio over the maxi-
mum task execution time for the two models respectively
is calculated for every task, and the number of tasks
within every 1% segment of the ratio is plotted.

While the number of tasks that have lower task execu-
tion time ratio than 1% is 19 in the audio equalizing, the
number of such tasks is 49 in the lane detection, as can
be seen in Figures 6 and 7. The tasks that have lower
task execution time ratio than 1% does not practically
perform any calculation and does consume task commu-
nication overhead. This means that the parallelized lane
detection has more workloads in terms of task communi-
cation than does the audio equalizing, and it leads to the
lower execution time reduction of 39%.

N
u
m

.
o
f
ta

sk
s.

��

�
 �
 �
�
�
 �
�
�
�
 �
 �
�
 �
�

��

��

��

��

	�

�

 ��

 ��

 ��

 ��

 	�

 ��

 ��

 ��

 ��

 ���

Task execution time ratio over the maximum task execution time.

Fig. 7. Histogram of task execution time ratio for the lane
detection.

X. Conclusion

This paper proposes a method to generate parallel C
code from models developed by the Simulink, which is
a model development tool. The proposed method re-
gards blocks in Simulink models as tasks and lines be-
tween blocks in Simulink models as communication chan-
nels respectively, and then generates parallel C code on
the basis of the theory of communicating sequential pro-
cesses (CSP). Under the process of parallelization, the
proposed method breaks loop structures in Simulink mod-
els for parallelization while preserving the original seman-
tics of the model. While the theory of CSP transfers
data items through communication, the proposed method
shares data items by using double buffers placed at shared
memories. As a result of parallelizing an audio equal-
izer model on a four-core processor running at 400MHz
the proposed method has reduced execution time down
to 26.3% through parallelization.

References
[1] Maurice Herlihy, and Nir Shavit, “The art of multiprocessor programming,”

Morgan Kaufmann, March 2008.
[2] Takamichi Miyamoto, Saori Asaka, Hiroki Mikami, Masayoshi Mase, Yasu-

taka Wada, Hirofumi Nakano, Keiji Kimura, and Hironori Kasahara, “Par-
allelization with automatic parallelizing compiler generating consumer elec-
tronics multicore API,” IEEE International Symposium on Parallel and Dis-
tributed Processing with Applications, pp. 600-607, Dec. 2008.

[3] Edward A. Lee, “The problem with threads,” Computer, Vol. 39, Issue 5,
May 2006.

[4] Michael I. Gordon, William Thies, Saman Amarasinghe, “Exploiting coarse-
grained task, data, and pipeline parallelism in stream programs,” Proceed-
ings of International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), October 21-25, 2006.

[5] William Thies, Michal Karczmarek, and Saman P. Amarasinghe, “StreamIt:
a language for streaming applications,” Proceedings of International Confer-
ence on Compiler Construction, p.179-196, April 08-12, 2002.

[6] Motohiro Takayama, Ryuji Sakai, Nobuhiro Kato, and Tomofumi Shimada,
“Molatomium: parallel programming model in practice,” USENIX Workshop
on Hot Topics in Parallelism, June 2010.

[7] Arquimedes Canedo, Takeo Yoshizawa, and Hideaki Komatsu, “Automatic
parallelization of simulink applications,” Proceedings of International Sym-
posium on Code Generation and Optimization (CGO), pp. 151-159, 2010.

[8] Arquimedes Canedo, Takeo Yoshizawa, and Hideaki Komatsu, “Skewed
pipelining for parallel simulink simulations,” Proceedings of DATE 2010, pp.
891-896, 2010.

[9] Sang-il Han, Xavier Guerin, Soo-Ik Chae, and Ahmed. A. Jerraya, “Buffer
memory optimization for video codec application modeled in simulink,” Pro-
ceedings of Design Automation Conference (DAC), July 24-28, 2006.

[10] Lisane Brisolara, Sang-il Han, Xavier Guerin, Luigi Carro, Ricardo Reis, Soo-
Ik Chae, and Ahmed Jerraya, “Reducing fine-grain communication overhead
in multithread code generation for heterogeneous MPSoC,” Proceedings of
International Workshop on Software and Compilers for Embedded Systems
(SCOPES), pp. 81-89, 2007.

[11] dSPACE, “ Real-time interface for multiprocessor systems (RTI-MP),” http:
//www.dspace.jp/en/pub/home/products/sw/impsw/rtimpblo.cfm .

[12] Charles Antony Richard Hoare, “Communicating sequential processes,” Pren-
tice Hall, ISBN 0-13-153289-8, April 1985.

[13] Younes Seyedi, “Professional Simulink audio equalizer,” available at http:
//www.mathworks.com/matlabcentral/fileexchange/ .

[14] The MathWorks, “Lane departure warning system,” vipldw_all.mdl, which is
a sample model distributed with Video and Image Processing Toolbox for
MATLAB/Simulink.

[15] Masaki Gondo, “Blending asymmetric and symmetric multiprocessing with
a single OS on ARM11 MPCore,” eSOL Co., Ltd. white paper, Informa-
tion Quarterly Vol. 6, Num. 2, 2007, available at http://www.esol.co.jp/
english/embedded/pdf/esol Multicore whitepaper.pdf .

- 191 -

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType true
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

