
Random Testing of C Compilers Targeting Arithmetic Optimization

Eriko Nagai 1 Hironobu Awazu 2 Nagisa Ishiura 1 Naoya Takeda 3

1 School of Science and Technology, Kwansei Gakuin University, Sanda, Hyogo, Japan
2 Windows Server Business Development Division, Fujitsu Ltd., Kawasaki, Kanagawa, Japan

3 Engineering Headquarters, ITEC Hankyu Hanshin, Co., Ltd, Osaka, Japan

Abstract—This paper presents a method of testing valid-
ity of arithmetic optimization of C compilers using ran-
dom programs. Compilers are tested by programs which
contain randomly generated arithmetic expressions. Un-
defined behavior (such as zero division and signed over-
flow) of the C language is carefully avoided during ran-
dom program generation. This is based on precise com-
putation of expected values of the expressions which takes
implementation-defined behavior (such as the size of int
and the semantics of shift right on negative integers) into
account. A method for automatic minimization of error
programs is also presented which expedites the analysis
of detected errors. A random test program based on our
method has detected malfunctions in several compilers,
which include LLVM GCC 4.2.1 shipped with the latest
Mac OS X, GCC 4.4.4 for Ubuntu Linux, GCC 4.3.4 for
Cygwin, and GCC 4.4.1 for h8300-elf and m32r-elf.

I. Introduction

Since compilers are infrastructure tools for developing
various software including operating systems and mission
critical applications, their reliability is one of the critical
issues in system development.

The most common way of validating compilers is the
use of test suites which are sets of programs to check the
functionalities of the compilers. There are several test
suites for C compilers, such as the one distributed with
GCC (GNU Compiler Collection)1, Plum Hall test suite2,
AC-TEST3, SuperTest4, and testgen25. By repeated test
suite runs and bug fixes, reliability of compilers are en-
hanced, to a good extent. However, it is theoretically im-
possible to validate a compiler completely with a finite set
of test programs, and actually many bugs are reported6

for well-used compilers such as GCC.
Random testing is a complement to test suites, which

attempts to detect compiler malfunctions beyond the
reach of the test suites. Compilers are tested by randomly
generated programs as long as time allows. Successful ex-
amples are Quest [1], randprog [2], and Csmith [3].

1http://gcc.gnu.org/install/test.html.
2http://www.plumhall.com/suites.html.
3http://www.actest.co.uk/.
4http://www.ace.nl/compiler/supertest.html.
5http://ist.ksc.kwansei.ac.jp/˜ishiura/pub/testgen2/.
6http://gcc.gnu.org/bugzilla/duplicates.cgi.

Although the overall scheme of random testing is sim-
ple, there are three subjects to be addressed: How to ex-
clude invalid programs from random generation, how to
know the “correct answers” the randomly generated pro-
grams are expected to present, and how to minimize pro-
grams which detect errors. Undefined behavior of the C
language makes the first issue a challenge. The expected
behavior of the programs is not always unique, for unspec-
ified behavior and implementation-defined behavior of C
may make the programs multivocal. Undefined behavior
also hinders automatic minimization of error programs,
which leads to painful hand minimization.

Since Quest [1] focused on passing of arguments and
return values on function calls, exclusion of undefined be-
havior and computation of expected values were not diffi-
cult. However, targets of random testing is extended to a
broader range of program constructs, the three issues be-
come prominent. In Csmith [3], which generates programs
consisting of thousands of lines, proposed variety of tech-
niques to avoid undefined behaviors, but in general it is
difficult to exclude undefined behavior completely. Differ-
ential testing [4], employed in randprog [2] and Csmith,
is a workaround for the expected value issue, in which
test programs are compiled by multiple compilers and the
results are compared. However, it may produce false pos-
itives due to unspecified and implementation-defined be-
havior of the C language. Since automatic minimization
of suspicious programs is extremely difficult under the ex-
istence of undefined behavior, the analysis task to distin-
guish the false positives and to classify the error programs
takes a lot of time and efforts.

This paper presents random testing of C compilers fo-
cusing on arithmetic expressions, whose compilation is
machine dependent and is susceptible to mistakes during
retargeting. A distinctive feature of our method is that by
focusing only on arithmetic expression the expected be-
havior of randomly generated programs are precisely pre-
computed taking implementation-defined behavior into
account. As a result, undefined behavior is completely
excluded during program generation and minimization of
error programs becomes possible, which makes the anal-
ysis of the error programs efficient.

A random test system based on the proposed method
has detected malfunctions in several compilers which in-
clude GCC 4.4.4 for Ubuntu Linux, LLVM GCC 4.2.1 for
Mac OS X, etc.

SASIMI 2012 ProceedingsR1-10

- 48 -

II. Random Testing of C Compilers

A typical flow of random testing of compilers is shown
in Fig. 1. In each iteration, a test program is randomly
generated, which is compiled and executed to check the
validity of the compilation. This iteration is repeated as
long as time permits. The program generation may focus
on a particular construct of the language (as in Quest [1])
or may target broad range of the language specification
(as in Csmith [3]). If errors are detected, the programs
in question are investigated. During this proess, the pro-
grams are minimized.

One of the major challenges in this test scheme is how
to randomly generate only valid programs. In the case of
the C language, undefined behavior makes this issue dif-
ficult. The undefined behavior is defined as “behavior,
such as might arise upon use of an erroneous program
construct or of erroneous data, for which the standard
imposes no requirements.” For example, it is invoked by
zero division, signed overflow, shift by a negative value,
array reference by an out of range subscript, etc. Since
possible undefined behavior of the C program ranges from
ignoring the situation with unpredictable results to ter-
minating execution, programs to test compilers must not
include constructs that yields undefined behavior. How-
ever, it is difficult to detect undefined behavior in ran-
domly generated programs for it depends on the dynamic
behavior of the programs.

How to know the correct behavior for randomly gener-
ated programs is another challenge. In general, automatic
computation of the expected values for random programs
needs enormous efforts, for it is equivalent to implement
an interpreter for (some subset of) the language. Instead
of developing such an interpreter, differential testing [4]
makes use of other compilers. Test programs are compiled
by multiple compilers, or multiple versions of a compiler,
or even a compiler with different optimization options.
The execution results are compared, and if they disagree,
the minorities would be suspects.

Although differential testing enables testing of compil-
ers with large random programs containing many lan-
guage constructs [3], a large number of false positives
might be produced due to implementation-defined behav-
ior and unspecified behavior of the C language. Unspeci-
fied and implementation-defined behavior is both “behav-
ior for a correct program construct and correct data, that
depends on the implementation,” where difference of the
two types of behavior is whether documentation for such
behavior is required or not. Examples of implementation-
defined behavior are size of int variables and the result of
shift right operations on negative integers. Compilers of
different target may produce codes of different behavior
for the same program. Even if the target is the same, a
program does not always compiles into the codes of the
same behavior due to unspecified behavior. For exam-
ple, there is no restriction on the order of evaluation for
subexpressions in a expression, and optimizers in compil-
ers make use of this freedom to generate more efficient
codes.

Minimization of the error programs is also an important

1: for (specified iterations or specified CPU time) {
2: generate a random program p;
3: if (compile and run(p) == ERROR) {
4: keep p as an error program;
5: }
6: }
7: analyze (minimize) error programs;

Fig. 1. Flow of Random Testing of Compilers.

1: #include <stdio.h>
2:
3: const volatile unsigned char x1 = 2U;
4: const volatile signed long long x6 = 1476669LL;
5: static const unsigned short x8 = 35U;
6:
7: int main (void)
8: {
9: int rc = 0;

10: signed long long test = 0;
11:
12: test = (((x8*(x6<<x8))>=x1)/x6);
13:
14: if (test == 0LL) {
15: printf("OK, %lld\n",test);
16: }
17: else {
18: rc = 1;
19: printf("NG, %lld\n",test);
20: }
21: return rc;
22: }

Fig. 2. Example of randomly generated test program. This
program actually found a bug in GCC 4.3.4 for Cygwin.

subject. Firstly, it must be decided if the errors are really
attributed to compiler malfunctions. This is indispensable
when the test generator produces false positives. Errors
may be due to bugs in the test program generator or mis-
interpretation of the language specification. Unspecified
behavior makes this decision difficult. Especially the C
language allows a certain degree of freedom in the preci-
sion during evaluation of floating point arithmetic which
might change the behavior of the programs. Secondly,
the construct in the error program that led to compiler
malfunction should be identified. Classification of the er-
ror programs should be also done, because plural error
programs often detect the same type of errors. For those
purposes, each error program must be minimized, namely
reduced to a program which is as small as possible and
still presents the same symptoms.

However, undefined behavior makes automation of the
minimization task difficult. While differential testing
might produce false positives, auto-minimization was not
implemented in Csmith, for unguarded reductions of pro-
grams lead to undefined behavior [3].

- 49 -

1: for (;;) {
2: randomly generate an expression tree e;
3: for (t=0; t < T ; t++) {
4: randomly assign initial value to each variable;
5: compute the expected value of e;
6: if (e does not yield undefined behavior) goto FIN;
7: }
8: }
9: FIN: generate a program from e;

Fig. 3. Generation of arithmetic expressions.

III. Random Testing of C Compilers Targeting

Arithmetic Optimization

In this paper, random testing of C compilers targeting
arithmetic optimization is presented. Our method relies
on precise computation of expected values rather than dif-
ferential testing. Generation of programs with undefined
behavior is carefully excluded based on computation of ex-
pected values. Implementation-defined behavior is faith-
fully interpreted in the subroutine to compute expected
values which is controlled by compiler specific parameters.

A. Test program

Fig. 2 shows an example of the test programs that
are generated by our method. It contains an arithmetic
expression (line 12), which consists of several operators
combining variables. The structure of the expression,
the kinds of the operators, the types/storage classes/type
qualifiers of the variables are chosen randomly. Since the
random initial value is declared to every variable (lines
3–5)7, the expression evaluates to some constant. The
result is compared with the expected value (line 14).

B. Generation of Arithmetic Expressions

The outline of the algorithm for test program genera-
tion is shown in Fig. 3. First, an expression tree e is gen-
erated using random numbers (line 2). First, a set of vari-
ables are generated. For each variable, its type, sotrage
class (static or none), and modifier (const, volatile,
const volatile, or none), and scope (local or global) are
randomly decided. Then it is decided if the root node of
e is an operation node or a variable node. For an opera-
tion node, its operation is randomly chosen from set of all
the arithmetic operations, and its children are generated
recursively. For an variable node, a variable is randomly
selected from the set of variables. Next, random initial
values are assigned to the variables (line 4). The expected
value of the expression is computed (line 5), during which
undefined behavior is detected. If e does not yield unde-
fined behavior (line 6), then a program is generated from
e (line 9). On the other hand, if e results in undefined
behavior, new initial values for the variables are gener-
ated and e is evaluated again. If e does not pass the test
within T trials, then e is discarded and regenerated.

7The variables can be either local or global, though this example
has only global variables.

It is possible that the outer loop in Fig. 3 iterates in-
finitely many times. This happens if e is large and e con-
tains shift operators, whose right operand must be less
than the width of the left operand. In order to prevent
this situation, the size of e is curved using two parame-
ters pL and pR that define the probabilities in which each
node has a left child and a right child, respectively.

The expected values for generated expressions is com-
puted by faithfully taking the implementation-defined be-
havior of the compiler under test into account. More
specifically, integer promotion, arithmetic conversion,
wrap around on unsigned integers, shift right on nega-
tive integers as well as detection of undefined behavior
invoked by overflow, underflow, and shifts with invalid
right operands, are carefully computed based on user de-
finable target parameters such as the number of bits and
the minimum and maximum values for every integer and
floating point types. Target specific information also in-
cludes the function to define the behavior of shift right
operations on negative integers, and the command name
and the options to invoke the compiler (and a simulator
if it is a cross compiler).

IV. Minimization of Error Programs

Given an error program, such as the one shown in Fig.
2, the arithmetic expression in the program (in line 12) is
reduced into a one that is as small as possible and that
still let the compiler yield the error. Then, declaration
of the variables which do not appear in the minimized
expression are deleted.

A. Minimization of Arithmetic Expressions

Arithmetic expressions are minimized by applying the
following basic transformations repeatedly:

1) Substitution of a variable by its initial value
One of the variables in the expression is replaced by
its initial value, as shown in Fig. 4 (a).

2) Evaluation of an operator
One of the leaf subexpressions is replaced by its re-
sulting value, as shown in Fig. 4 (b). Note that a
change on the type of constant values such as the
one shown in Fig. 4 (c) also takes an application of
this transformation. This is to identify type related
malfunctions.

3) Choice of top operands
One of the operands of the top operation is chosen
and the other is deleted, as shown in Fig. 4 (d), where
the expected value is also replaced.

In this paper, a minimized form of an error program
is defined as a program to which a single application of
any basic transformations results in disappearance of the
error. Note that there are multiple minimized forms for an
error program that satisfy this condition. Our goal is to
find one of them. Depending on compiler bugs, there are

- 50 -

1: int x1 = 2; int x2 = 3;
2: int test = (x1 + x2) * x1;
3: if (test == 10) OK else NG

↓
1: int x1 = 2; int x2 = 3;
2: int test = (2 + x2) * x1;
3: if (test == 10) OK else NG

(a) Basic transformation 1 (substitution of variables)

1: unsigned int x3 = 1;
2: unsigned int test = (-3 + 2) * x3;
3: if (test == 4294967295U) OK else NG

↓
1: unsigned int x3 = 1;
2: unsigned int test = -1 * x3;
3: if (test == 4294967295U) OK else NG

(b) Basic transformation 2 (evaluation of leaf subexpression)

1: unsigned int x3 = 1;
2: unsigned int test = -1 * x3;
3: if (test == 4294967295U) OK else NG

↓
1: unsigned int x3 = 1;
2: unsigned int test = 4294967295U * x3;
3: if (test == 4294967295U) OK else NG

(c) Basic transformation 2 (evaluation of leaf subexpression)

1: int x1 = 5; int x2 = 7;
2: int test = (x1 + x2) / x1;
3: if (test == 2) OK else NG

↓
1: int x1 = 5; int x2 = 7;
2: int test = (x1 + x2);
3: if (test == 12) OK else NG

(d) Basic transformation 3 (choice of subexpression)

Fig. 4. Basic transformations for minimization.

cases where a single application does not cause error but
multiple application does. Such a kind of minimization is
beyond the scope of this paper.

Reduction of programs using the basic transformations
1 and 2 are referred to as “top-down minimization,” while
reduction using the basic transformation 3 as “bottom-
up minimization.” Our method attempts to reduce given
error programs by applying the top-down and bottom-up
minimization alternately until they are not applicable any
more. The both minimization procedures runs on the tree
data structure representing arithmetic expressions.

B. Top-Down Minimization

The outline of our algorithm for top-down minimization
is as shown in Fig. 5. It receives a tree r to represent
arithmetic expression and returns a minimized tree. If r
is a leaf (variable) node, it returns r, for there is no room
for top-down minimization (line 3). Otherwise (if the root
of r is an operator), it tests the left subtree (lines 5–8).
It generates a program from the subtree and checks it for
compilation and execution. If error still occurs, it recurses
on the subtree. Otherwise, the same attempt is done on
the right subtree (lines 9–12). Neither subtree yields an
error, it returns r, which means top-down minimization
is not applicable.

C. Bottom-Up Minimization

Bottom-up minimization also receives an expression
tree r and returns a minimized tree. Fig. 6 shows the
outline of the bottom-up minimization algorithm. Set C
keeps candidate nodes which can be replaced by constant
nodes while set F keeps the nodes to which substitution
failed (substitution has resulted in disappearance of the
error). The main loop (lines 5–17) continues until there

1: tree topdown minimization(tree r)
2: {
3: if (r is a variable) { return r; }
4: else {
5: p = generate program(r.left);
6: if (compile and run(p) == ERROR) {
7: return topdown minimization(r.left);
8: }
9: p = generate program(r.right);

10: if (compile and run(p) == ERROR) {
11: return topdown minimization(r.right);
12: }
13: return r;
14: }
15: }

Fig. 5. Top-down minimization.

is no candidate. On each iteration, an arbitrary node x is
taken out of C, which are evaluated and replaced by the
resulting constant value node. If the resulting program
does not yield the error (lines 9–12), this substitution is
a failure; node x is restored and is kept in fail list F . On
the other hand, if the error is detected (lines 13–16), this
substitution is adopted; C is updated so that it includes
a node which newly becomes evaluable, and the nodes in
F are also included in C, for these nodes may cause the
error on the modified r. Finally the procedure returns
resulting tree r.

V. Implementation and Experimental Results

A. Implementation

A random test program based on the proposed method
has been implemented in Perl 5. It runs on Unix systems,

- 51 -

TABLE I
Summary of experiments.

compiler (target)
generated

tests
errors

error
classes

false
positives

OS/CPU/memory time [h]

llvm-gcc 4.2.1 (i686-apple-darwin10) 500,000 3 3 0 Mac OS X/Core 2 Duo 2.12GHz/2GB 38.5
gcc 4.2.1 (i686-apple-darwin10) 100,000 3 3 0 Mac OS X/Core 2 Duo 2.12GHz/2GB 20.8
gcc 4.3.4 (pc-cygwin) 10,000 6 6 0 Cygwin/Core 2 Duo 1.40GHz/3.40GB 5.5
gcc 4.4.4 (i686-linux) 50,000 2 2 19 Ubuntu/Core i5 2.67GHz/4GB 5.1
gcc 4.4.1 (arm-elf) 200,000 0 0 0 Ubuntu/Core i5 2.67GHz/4GB 22.6
gcc 4.4.1 (m32r-elf) 30,000 21 5 0 Ubuntu/Core i5 2.67GHz/4GB 2.9
gcc 4.4.1 (h8300-elf) 10,000 83 4 17 Ubuntu/Core i5 2.67GHz/4GB 1.1

1: tree bottomup minimization(tree r)
2: {
3: C = { all the variable nodes };
4: F = φ; /* to keep once failed nodes */
5: while(C) {
6: take an arbitrary node x out of C;
7: evaluate node x and replace x by resulting value;
8: p = generate program(r);
9: if (compile and run(p) != ERROR) {

10: restore x;
11: F = F ∪ {x};
12: }
13: else {
14: put newly evaluable node into C;
15: C = C ∪ F ; F = φ;
16: }
17: }
18: return r;
19: }

Fig. 6. Bottom-up minimization.

including Ubuntu Linux, Mac OS X, Cygwin on Windows,
etc. The target standard is C99 (ISO/IEC 9899:1999).
The values of the parameters T , pL, and pR are set to
100, 0.45, and 0.45, respectively.

B. Error detection capability and run time

TABLE I is a summary of the experiments. The first
column lists the versions and targets of the compilers
tested. Column “generated tests” shows the numbers of
random programs generated, “errors” the numbers of pro-
grams that detected errors. Some programs detected er-
rors of the same type. Thus, column “error classes” shows
into how many classes they are categorized. The column
“false positives” lists the numbers of the programs that
were reported as errors but turned out to be correct be-
havior by manual analysis. The last two columns are the
computation environments and computation time.

With 10 ∼ 40 hours, several malfunctions for each com-
piler was detected, except for gcc 4.4.1 for arm-elf. All of
the false positives on gcc 4.4.4 for i686-linux and gcc 4.4.1
for h8300-elf were due to the floating point precision.

C. Minimization

Fig. 7 is the reduced program obtained from the error
program listed in Fig. 2 by our auto-minimizer. The ex-

1: #include <stdio.h>
2:
3: const volatile signed long long x6 = 1476669LL;
4:
5: int main (void)
6: {
7: int rc = 0;
8: signed long long test = 0;
9:
10: test = (x6<<(signed int)35);
11:
12: if (test == 50737960496136192LL) {
13: printf("OK, %lld\n",test);
14: }
15: else {
16: rc = 1;
17: printf("NG, %lld\n",test);
18: }
19: return rc;
20: }

Fig. 7. Program minimized from error program in Fig. 2.

TABLE II
Computation time for minimization.

(GCC 4.4.1 for Cygwin, Core i5 2.67GHz)

operators CPU
before after [sec]

9 1 16.85
7 1 6.55
7 1 10.53
5 2 7.31
5 2 9.42

pression in line 12 of Fig. 2, consisting of 5 operations,
was automatically reduced to a single binary operation,
from which we can see that malfunction exists in the shift
left operation.

TABLE II lists the CPU time spent for the minimiza-
tion. The compiler under test was GCC 4.4.1 on Cygwin
and the CPU is Core i5 2.67GHz with 4GB memory. The
computation time is roughly proportional to the number
of the operators in the error programs.

The automatic minimization capability was actually
useful in analyzing the results in TABLE I, especially
those of gcc 4.4.1 for h8300-elf. Furthermore, the min-
imizer had been indispensable to find bugs in the routine
for computing expected values in earlier versions of our

- 52 -

random test system.

D. Detected Bugs

Fig. 8 shows some examples of error programs which
detected compiler bugs by our method. Based on the
outputs of the minimizer, the programs were further min-
imized by hand. In examples (a) and (d), the compilers
generated codes that yielded erroneous outputs. In ex-
amples (b) and (c), the compilers crashed on such short
programs.

VI. Conclusion

This paper presented a method for random testing of
C compilers targeting optimization of arithmetic expres-
sions. A method of auto-minimizing error programs is
also shown. The test generator based on the methods
detected several bugs in GCCs.

Currently, the ability of the test generator is limited
because the size of the expression is intentionally curved
to avoid undefined behavior. We are now working on the
generation of longer expressions without undefined behav-
ior. Development of algorithms to accelerate minimiza-
tion is another important subjects.

Acknowledgment

Authors would like to thank Mr. Nobuyuki Hikichi
(TOPS Systems Corporation) for his discussion and
advices on compiler testing. We would also like to
thank Mr. Shohei Yoshida (now with AXE, Inc.), Mr.
Yuki Uchiyama (now with K-Opticom Corporation), and
Mr. Soichiro Taga (now with Mitsubishi Electric Micro-
Computer Application Software Co., Ltd.) for their dis-
cussion and help. We thank Mr. Fukumoto, Mr. Ooki,
and all the members of Ishiura Lab. of Kwansei Gakuin
University for their discussion on this research.

References

[1] Christian Lindig: “Find a Compiler Bug in 5
Minutes,” in Proc. ACM International Symposium
on Automated Analysis-Driven Debugging, pp. 3–12
(Sept. 2005).

[2] Eric Eide and John Regehr: “Volatiles Are Miscom-
piled, and What to Do about It,” in Proc. 7th ACM
International Conference on Embedded Software, pp.
255–264 (Oct. 2008).

[3] Xuejun Yang, Yang Chen, Eric Eide, and John
Regehr: “Finding and Understanding Bugs in C
Compilers,” in Proc. 2011 ACM SIGPLAN Confer-
ence on Programing Language Design and Implemen-
tation (PLDI) pp. 283–294 (June 2011).

[4] W. M. McKeeman: “Differential Testing for Soft-
ware,” Digital Technical Journal, vol. 10, no. 1,
pp. 100–107 (Dec. 1998).

1: #include <stdio.h>
2:
3: unsigned int x = 0;
4:
5: int main (void)
6: {
7: int test = (-0.5 <= (double) x);
8: if (test != 1) {
9: printf("error (test = %d)\n", test);

10: }
11: return 0;
12: }

(a) LLVM-GCC 4.2.1 for i686-darwin10 (shipped with Mac OS
10.7 (Lion)) miscompiled this program. With -O1 option, the
generated code printed "error (test = 0)".

1: #include <stdio.h>
2:
3: const volatile long long x2 = 15LL;
4:
5: int main (void)
6: {
7: int test = 768 << (x2 - 1LL);
8: if (test != 12582912) {
9: printf("error (test = %d)\n", test);

10: }
11: return 0;
12: }

(b) GCC 4.3.4 for x86-cygwin with -O1 option crashed on this
program.

1: #include <stdio.h>
2:
3: volatile int x = 1;
4:
5: int main (void)
6: {
8: long test = 7L * (1L >> 1 / x);
9: if(test != 0) {

10: printf("error (test = %l\n)", test);
11: }
12: return 0;
13: }

(c) GCC 4.4.1 for h8300-elf on Ubuntu Linux with -O1 option
crashed on this program.

1: #include <stdio.h>
2:
3: int main (void)
4: {
6: volatile short x1 = -1000;
7: long test = 40L * x1;
8: if (test != -40000L) {
9: printf("error (test = %l)\n", test);

10: }
11: return 0;
12: }

(d) GCC 4.4.1 for M32R miscompiled this program. With -O1
option, the generated code output "error (test = 25536)".

Fig. 8. Example of programs that detected bugs in compilers by
our method.

- 53 -

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType true
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

