
Accelerating Regression Test of Compilers by Test Program Merging

Takayuki Fukumoto 1 Kazushi Morimoto 2 Nagisa Ishiura 1

1 School of Science and Technology, Kwansei Gakuin University, Sanda, Hyogo, Japan
2 Securities Systems Management Services Department, Nomura Research Institute, Tokyo, Japan

Abstract—This paper proposes a method of accelerat-
ing regression test of compilers by merging test programs
in compiler test suites. Large amount of computation
time is needed for compiler testing through test suites,
for they consist of a huge number of test programs. Espe-
cially, in early stages of compiler development, reduction
of time for testing is a critical issue, for bug fixes and
regression tests are alternately repeated for many times.
The proposed method attempts to shorten the time for
test suite run by merging test programs in the test suite
into longer but fewer programs, which drastically reduces
the overhead for file open/close. During the merger, con-
flicts among the names of global variables, functions, and
user defined types are avoided by prefixing. Header file
inclusion as well as multiplier compilation are carefully
handled so that the semantics of the original test pro-
grams are maintained. A technique is also proposed to
identify test programs that resulted in execution errors
while executing the merged test programs. In an experi-
ment where about 9,000 test programs in the testgen2 test
suite were merged into 117 programs, computation time
was reduced into 1/11.1 on Ubuntu Linux and into 1/63.9
on Cygwin on 2.5GHz Core i5 CPU.

I. Introduction

Compiler reliability is a critical issue in all kinds of
system development, for compilers are infrastructure tools
to develop various software. Compilers must be tested
thoroughly in many ways which include testing by test
suites [1, 2, 3, 4, 5], random testing [6, 7, 8, 9], etc.

A test suite of compilers is a set of test programs which
are designed to check compilers’ functionalities. The size
of the test suites tend to be huge, for they must test com-
pilers with respect to a broad range of requirements from
the language specifications. The number of test programs
in a test suite may range from several thousands to mil-
lions, which results in very long run time.

The run time might not be a big issue when the test
suite is run only once. However, as long as bugs are de-
tected, they must be fixed, after which the test must be
rerun in order to verify that the bugs has been removed
and also that new bugs are not introduced by the mod-
ification. Especially in early stages of compiler develop-

ment, where test suites still detects a lot of errors, bug
fixes and regression tests are frequently repeated, where
the number of remaining bugs reported by the test suite
works as a barometer of the progress of the debugging
tasks. In this situation, reduction of the time for test is
of critical importance.

This paper proposes a method of reducing the time for
test suite run drastically by merging test programs. A
group of test programs are merged into a single program
where the main functions in the original programs are
converted into subroutine functions that are called from
a new main function. Conflicts of the names are resolved
by renaming and file inclusion and multifile compilation
are carefully handled so as to prevent the merging from
changing the intent of the original test programs. Fur-
thermore, a technique is also proposed to identify test
programs that resulted in execution errors while execut-
ing the merged test programs.

Experiments on the testgen2 C compiler test suite [5]
shows that the run time was reduced into 1/11.1 and
1/63.9 of those for the original test suite on Ubuntu Linux
and Cygwin, respectively.

II. Run Time for Test Suites for C Compilers

One of the most popular way of testing compilers is
to compile and execute a set of programs to see if the
generated codes behave as expected. The programs are
called test programs and the set of the test programs are
called a test suite.

A compiler test suite usually consists of a huge number
of test programs. A primary reason for this is that compil-
ers have so many functionalities to be validated. Another
reason is that the test programs are often broken into
smaller pieces so that the debugging of the compilers will
be easier when errors are detected. This makes the run
time for test suites longer for its LOCs, due to increased
overhead for file open/close.

There are several types of test suites for C compilers.
Validation test suites [1] and commercial test suites [2, 3],
which are used for mature compilers, consist of hundred
thousands to millions of test programs. The test suite
distributed with GCC (GNU Compiler Collection) [4] is

SASIMI 2012 ProceedingsR1-9

- 42 -

��������	�
�
����

�����������	������	����

�����	����

�����������	���������

� ��

�!��"#��$%&

�'� ��#������� (#)�#*�	+

�,�

�-� ��	�� .��+

��� (#)�#*�	�.��+

��� ��	�� .�(#)�#*�	+

���

��� ���$��	�� ..��%

��� �)���/0$%+

� � 	��	

�!� �)����/$%+

�'�

�,��)	��)���+

�-� 1

Fig. 1. An example of test programs.

composed of abut 3,000 files and is also used to verify the
correctness of retargeting.

On the other hand, some test suites, such as testgen2
[5], are intended for use during compiler development.
The testgen2 test suite is a collection of about 9,000 test
programs to check basic functionalities of C compilers.
Fig. 1 is an example of the test programs in testgen2. It
checks if accesses to a static variable work correctly, where
printok() and printno() are user definable macros to
report the result1.

During compiler development, the test suite should be
run every time bugs are fixed, for it must be confirmed
that the bugs have been certainly removed and that the
functionalities which had been valid before the bug fix
have not been impaired. On 2.5 GHz Core i5 CPU with
4GB memory, the run time for the testgen2 test suite is
about 7 minutes on Ubuntu Linux and 4 hours 49 minutes
on Cygwin, while the time necessary for building GCC
(version 4.5.1) is about 11.5 minutes on Ubuntu Linux and
39.5 minutes on Cygwin. In this situation, acceleration of
test suite run becomes a very important issue, especially
on Cygwin where file accesses are slow.

III. Acceleration of Test Suite Run by Test

Program Merging

A. Basic Idea

This paper proposes a program merging technique for
accelerating test suite run, where small test programs are
combined into larger but fewer programs so that the over-
head for the file accesses will be reduced.

Fig. 2 illustrates the basic concept of the proposed
method. There are three test programs t001.c, t002.c,

1Usually printf() is used to output specific strings to the stan-
dard output, but in early development stages where printf() is not
yet available, low level I/O functions like write() or direct access
to the memory is used instead.

��� ��� ����	
����

���� �����������

��� �

��� ��� ����	
����

���� �������� ��

��� �

������

������

��������� ��	�
�

��� ��� ���������	�

���� �����������

��� �

���

��� ��� ���������	�

���� �����������

��� �

���

��� ��� ���������	�

���� �����������

��� �

���

������� ����	�

���� ���������	

���� ���������	

���� ���������	

�������!��"!���

�����

��	�
���

��� ��� ����	
����

���� �����������

��� �

������

Fig. 2. Basic concept of test program merging.

and t003.c in a directory test-a. They are merged
into a single program test-a.c, where main functions in
the original test programs are renamed into t001 main,
t002 main, and t003 main, and are invoked from the
new main function of test-a.c. The resulting program
is functionally equivalent to the three original test pro-
grams, while it is more efficient in terms of the file I/O
(open/close) count. Overhead for launching the compiler
is also reduced.

Although the basic merger scheme is simple, conflicts of
the variable, function and type names must be taken care
of. Special treatments are also needed for file inclusion
and multifile compilation.

B. Resolving Name Conflicts by Prefixing

Naive merger illustrated in Fig. 2 may cause conflicts
of the names. Cares must be taken on the names of the
global variables, the functions, and the types (declared by
typedef statements). Fig. 3 illustrates an example of the
conflicts. Test programs t001.c and t002.c both declare
global variable t var and function func. Fig. 3 (b) is a
result of naive merger where conflicts occur with respect
to names t var and func.

This kind of conflicts are resolved by prefixing all the
names of the variables, functions, and types in the test
programs by strings identifying the original programs.
Fig. 3 (c) shows the example where distinct names are
given to the global variables and functions.

C. Handling of Header Files

Header files are classified into two categories; the sys-
tem (or standard) header files and user defined header
files. They must be handled differently according to their
categories.

- 43 -

��� ��� ���	
�

������ ���������

������ �	���������

��� �

��� �

������

��� ��� ���	
�

������ ���������

������ �	���������

��� �

��� �

������

��� ��� ���	
�

������ ���������

������ ������	�����

��� �

��� �

���

��� ��� ���	
�

������ ���������

������ ������	�����

��� �

��� �

���

��� ��� �	���������

��� ������	�����

��� ������	�����

���
 ��
���

����

��� ��� ��������	
�

������ ��������������

������ ������	�����

��� �

��� �

���

��� ��� ��������	
�

������ ��������������

������ ������	�����

��� �

��� �

���

��� ��� �	���������

��� ������	�����

��� ������	�����

���
 ��
���

����

(a) before merger (b) naive merger (c) prefixing

Fig. 3. Resolution of name conflicts.

The system header files are common to all the pro-
grams. Since all the functions, macro variables, and global
variables defined in the system header files are referenced
from the other functions by the same name, their names
need not be be modified. Although almost all the sys-
tem header files are written so that they can be included
multiple times, the same system header files should be
included only once for safety.

On the other hand, the user header files involve the
aliasing problem; different header files may define different
variables or functions in the same name, which should be
renamed as stated in the previous subsection.

Based on the observation above, header files are han-
dled in the following way.

1. The system header files are not expanded. If there are
multiple occurrences of inclusion for the same header
file, they are reduced to one.

2. The user header files are expanded into the test pro-
grams before they are merged. During the merger,
the names of all the variables, functions, and types
are modified as described in the previous section.

Fig. 4 shows an example of header file process-
ing. Directory test-b contains two test programs
t001.c and t002.c, where t001.c includes standard
header files stdio.h and math.h along with user header
file incfile.h, while t002.c includes stdio.h and
incfile.h. The program test-b.c on the right hand
side is the result of the merger. The two system header
files are included only once (on lines 01 and 02). Lines
04 through 06 are the expansion of user header file
inclfile.h, which is the result from the include state-
ment on line 03 of t001.c. The names are modified to
have prefix “t001 .” Lines 09 through 11 are also the ex-
pansion of inclfile.h but “t002 ” are prefixed to the
names this time.

��� �����	
���
�����

���������	
���������

���������	
�������������

���

������� ��������
�

�!�� "

�#� $

������

��� �����	
���
�����

���������	
���������

����

�����%&�
�� ��� ����'(&&��)

������� ����'*��)

�!�����+�����',��+)

�#����� ����'������ �"�$

�-�

�.���%&�
�� ��� ����'(&&��)

������� ����'*��)

�������+�����',��+)

������� ����'������ �"�$

���

������� ��������
�

��� ����'������)

�!� ����'������)

�#�� /��	/���)

�-��$

��� �����	
���
�����

���������	
�������������

���

������� ��������
�

���� "

�!� $

������

��� �%&�
�� ��� (&&��)

������� *��)

�������+�,��+)

���������

��������� ��	�
�

��	�
���

Fig. 4. Handling of header files.

The procedure above is easily implemented if C prepro-
cessors can selectively handle the system and user header
files. For example, gcc with -E -nostdinc option ex-
pands only user header files but ignores include state-
ments for the system header files.

D. Merging of Input/Output Data

If test programs are accompanied with input data and
expected output data, they must also be merged. This is
rather straightforward; they just need to be concatenated.
Sometimes, as is in the testgen2 test suite, the occurrences
of specific strings are counted. In that case, the sum of the
expected counts are used for the merged test programs.

E. Multifile Compilation

Test suites may contain tests to validate multifile com-
pilation. In this case, the simple prefixing scheme de-
scribed in subsection III.B. does not work, for the same
program file is used multiple times in different combina-
tions of other files. To solve this problem, the renaming
scheme is extended so that the prefixes will be the con-
catenations of the identifying strings of the program files
used for multifile compilation.

Fig. 5 illustrates this scheme. Directory test-c has
four program files where A.c contains a main function.
A test scenario for multifile compilation is assumed to
be specified in file FILESET. In this example, two test
cases, linking of files {A.c, B.c, C.c} and linking of {A.c,
D.c}, are instructed. The test programs in directory
test-c are merged into three files test-c1.c, test-c2.c,
test-c3.c, and a new FILESET file. The file test-i.c
contains the programs that appears as the i-th elements

- 44 -

��� �����	
�
�
������

���� 	
�
�
�������

�����

���

������� 	
�
�����

���� 	
�
�������

�����

� �

�!����� ����������

���� 	
�
�
������

���� 	
�
������

���� "#��"����

�����

��������� ��	�
�

������� ����������

���� �������

�����

	$%

������� �����

���� �������

�����

�$%

������� �������

���� &

�����

�$%

������� �����

���� &

�����

�$%

	$% �$% �$%

	$% �$%

'()*+*,

��� �����	
�
�
�������

���� 	
�
�
�������

�����

���

������� 	
�
������

���� &

�����

��� �����	
�
�
�������

���� &

�����

��	�
����

��	�
���

��	�
����

�������

�#��-%�$%���#��-%�$%���#��-%�$%

Fig. 5. Merger of multifile compilation tests.

in the combinations specified in the original FILESET.
test-1.c also contains the new main function to call all
the test cases. Note that all the names of the variables,
functions, and types are prefixed with the combination of
the name of the files that are tested for multifile compila-
tion. For example, all the variables and functions used for
test of combination {A.c, B.c,C.c} are renamed to have
prefix “A B C .”

IV. Identification of Error Programs

The method described so far is only effective in confirm-
ing that the compiler under test passes all the tests. Once
an error is detected by a merged test program, the original
tests should be run to identify the test cases in question.
In the actual compiler development, the test suite run
is repeated for many times even when the compiler fails
at many test cases, for the number of remaining (faulty)
cases works as a barometer of the progress of compiler
development or debugging.

In this section, the merger scheme is extended so that
the test programs at which the compiler under test fails
are identified by the run of the merged test program. This
is realized by letting the merged programs output special
delimiters to separate the outputs of the original test pro-
grams and also by making the merged program resumable
even if some test cases result in crashes.

Fig. 6 shows how the delimiter works. Suppose test two
programs are merged into one. Fig. 6 (a) shows the two
output sequences of the original programs where @NG@ in

@OK@

@OK@

@NG@

　
@OK@

@OK@

@OK@

@OK@

@NG@

@OK@

@OK@

@OK@

@OK@

@NG@

====

@OK@

@OK@

(a) before merger (b) after merger (c) with delimiter

Fig. 6. Output of the test programs.

the first sequence indicates that the compiler has some
problem with the first test case. However, the test pro-
grams are merged, the output becomes as shown in Fig.
6 (b), from which one cannot identify the test program
that caused the error. This problem is solved by letting
the merged test program output the delimiter to separate
the outputs of the test case, as in Fig. 6 (c).

The other problem to be considered is unexpected abor-
tion of test caused by crash or timeout (to break infinite
looping) of the generated codes or of the compiler itself.
If there is a test program that crashes in a group of pro-
grams to be merged, the resulting program also crashes,
leaving the test cases after the crash unexecuted. In order
to precisely identify the programs that does not pass the
test, execution must be resumed after the abortion.

This is realized by extending both merged test pro-
grams and the test script. On finish or abortion of the
run of the merged test program, the test script compares
the output of the test program with the expected val-
ues to check if all the test cases have been executed. If
abortion is detected, the test case in question is identified
and the test program is restarted. The merged test pro-
gram is modified so that it can resume execution from the
test case specified by one of the command line arguments.
Fig. 7 is a modified version of the merged program. It can
choose the entry point according to the argument passed
from the command line. PRINTDIV() on lines 12 and 14
is a macro to output the delimiter.

V. Experimental Results

A test merger script and a test execution script based
on the proposed method were implemented on top of the
testgen2 test suite. The scripts were written in Perl 5.10.1
and runs on Unix systems such as Linux, Cygwin, and
Mac OS X.

The merger was applied to the K&R directories of the
testgen2 test suite. About 9,000 program files in 85 di-
rectories were merged into 117 files. In the current imple-
mentation, the test programs in a directory were merged
into one test program. The reason why there were more
than 85 files was that some directories included tests for

- 45 -

��� ��� ������	��
��

��� �����������

��� �

���

��� ��� �����	��
��

���� ����������

��� �

���

������� �	��
��� 	������ �	����

���� � ���!
"#$
	�������

��� �	�����������	��
�%

��� &'"#$(")
�%

���� �	���������	��
�%

���� &'"#$(")
�%

���� �

���� *��+*���%

��� �

Fig. 7. Revised version of merged test program.

multifile compilation. 2.
TABLEs I and II summarize the run time for the test-

gen2 test suite on Ubuntu Linux (GCC 4.5.2) and on Cyg-
win (GCC 3.4.4), respectively. The CPU was 2.5 GHz
Core i5 and was equipped with 4.0GB memory. In col-
umn “settings,” “x% fail” means that the tests fail at
x% of the programs in the test suite (this situation was
created by modifying the expected output for x% of the
test cases) and “x% abortion” means that the execution of
was aborted at x% of the test programs (this situation was
created by intentionally injecting a code to cause memory
access error into x% of the test programs). Columns “w/o
merge” and “proposed” show run time for the test suite
before merger and after merger, respectively.

When the compilers passes all the tests, the test suite
run was accelerated by 11.1 times on Linux and 63.9 times
on Cygwin. Especially on Cygwin, where file accesses
are slow, reduction of run time is significant. As rows
“20% fail” and “40% fail” show, the performance of the
merged test programs was not effected by the percentage
of test cases that fails. However, frequent abortion of test
programs degrades the performance of the merged test
programs. However, even when 40% of the tests result
in abortion, which might be rather too pessimistic, the
merged program was still faster by more than 5 times.

The time required for merger was 2 minutes 30 seconds
on Linux Linux and 2 hours 40 minutes on Cygwin. Note
that the merge have to be done only once, as long as there
is no change on the test suite.

Although the merged programs theoretically have the
same functionality as the original test programs, they
might behave differently depending potential compiler
malfunctions. In fact, there were cases where GCC 4.5.1
cross compiler for ARM passes all the original test pro-

2More specifically, there are 9 directories out of 85 that include
testing of multifile compilation. Linking of 2 files are required in
6 directories, and linking of 4, 10, and 15 files are required in one
directory each. Thus all the test cases are merged into (85 − 9) +
2 × 6 + 4 + 10 + 15 = 117 files

TABLE I
Run time of testgen2 test suite on Ubuntu Linux.

settings w/o merge proposed acceleration

0% fail 7m03s 38s 11.1

20% fail 7m03s 39s 10.8
40% fail 7m03s 38s 11.1

20% abortion 6m54s 56s 7.4
40% abortion 6m49s 1m19s 5.2

GCC 4.5.2 (i686-linux-gnu)/Core i5 2.5GHz with 4GB memory

TABLE II
Run time of testgen2 test suite on Cygwin.

settings w/o merge proposed acceleration

0% fail 4h49m48s 4m32s 63.9

20% fail 4h49m03s 4m35s 63.1
40% fail 4h48m38s 4m32s 63.7

20% abortion 4h47m52s 24m28s 11.8
40% abortion 4h49m11s 45m16s 6.4

GCC 3.4.4 (i686-pc-cygwin)/Core i5 2.5GHz with 4GB memory

grams in the test suite but it fails on a merged program.
The cause of the error was not indentified yet, but our
conjecture is that merged programs have higher testing
ability than the original test programs. On the other
hand, no opposite case has been encountered so far where
a merged test program failed to detect errors in the orig-
inal programs.

VI. Conclusion

A method of accelerating regression test of compilers
by merging programs in test suite was presented in this
paper, by which computation time for test suite run was
drastically reduced. The scripts based on the proposed
method will be distributed under GPL2 along with the
testgen2 test suite. As another approach to accelerating
test suite run, we are now developing multicore versions
of the test script.

Acknowledgment

Authors would like to thank Mr. Nobuyuki Hikichi
(TOPS Systems Corporation) for his discussion and ad-
vices on compiler development and test suite. We would
also like to thank Mr. Shohei Yoshida (AXE, Inc.) and
Mr. Soichiro Taga (now with Mitsubishi Electric Micro-
Computer Application Software Co., Ltd.) for his com-
ments and continuous support for improving testgen2test
suite. We thank Mr. Ooki and all the members of Ishiura
Lab. of Kwansei Gakuin University for their discussion on
this research.

- 46 -

References

[1] http://www.plumhall.com/suites.html.

[2] http://www.actest.co.uk/.

[3] http://www.ace.nl/compiler/supertest.html.

[4] http://gcc.gnu.org/install/test.html.

[5] http://ist.ksc.kwansei.ac.jp/ ishiura/pub/testgen2/index.html.

[6] Christian Lindig: “Find a Compiler Bug in 5 Min-
utes,” in Proc. ACM International Symposium on Au-
tomated Analysis-Driven Debugging, pp. 3–12 (Sept.
2005).

[7] Eric Eide and John Regehr: “Volatiles Are Miscom-
piled, and What to Do about It,” in Proc. 7th ACM
International Conference on Embedded Software, pp.
255–264 (Oct. 2008).

[8] Xuejun Yang, Yang Chen, Eric Eide, and John
Regehr: “Finding and Understanding Bugs in C Com-
pilers,” in Proc. 2011 ACM SIGPLAN Conference
on Programing Language Design and Implementation
(PLDI) pp. 283–294 (June 2011).

[9] Eriko Nagai, Hironobu Awazu, Nagisa Ishiura, and
Naoya Takeda: “Random Testing of C Compilers Tar-
geting Arithmetic Optimization,” in Proc. SASIMI
2012, R1-10 (Mar. 2012).

- 47 -

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

