
High-Level Synthesis of Variable Accesses and Function Calls
in Software Compatible Hardware Synthesizer CCAP

Masanari Nishimura Kenichi Nishiguchi Nagisa Ishiura Hiroyuki Kanbara
School of Science and Technology ASTEM RI

Kwansei Gakuin University
{nishimura.m,scbc9043,ishiura}@ ksc.kwansei.ac.jp kanbaraastem.or.jp

Hiroyuki Tomiyama Yutets Takatsukasa Manabu Kotani
Graduate School of Information Science Graduate School of Informatics

Nagoya University Kyoto University
tomiyama@is.nagoya-u.ac.jp {takatsukasa,kotani}@vlsi.kuee.kyoto-u.ac.jp

Abstract—We are developing a high-level synthe-

sis system named CCAP (C Compatible Architecture

Prototyper), which synthesizes arbitrary functions in

ANSI-C programs into hardware modules callable from

the remaining software functions executed on a CPU.

The synthesized hardware shares the entire memory

space with the CPU and transfers data and controls

through global variables. This eliminates the necessity

of designing a dedicated interface for each hardware

module. Programs including pointers are synthesized

in a natural way, so that arrays and dynamic data allo-

cated in the software may be accessed from the hard-

ware using pointers. In this paper, we present the key

synthesis techniques employed in CCAP, including the

handling of variables, the mechanism of function calls

using global variables, and scheduling of the function

calls.

I. Introduction

High-level synthesis, which synthesizes register transfer
level circuits from behavioral specification of target sys-
tems, is gaining popularity as a technology to enhance the
efficiency of VLSI design.

Various languages have been used as input to high-level
synthesis, including hardware description languages such
as Verilog HDL and VHDL, system description languages
such as SystemC, SpecC, Bach-C, and Handel-C, and pro-
gramming languages such as ANSI-C/C++. ANSI-C is an
attractive choice among them because of its popularity and
fast simulation speed. Moreover, it offers the possibility of
exploiting existing programs, which are given as the ref-
erence model of the target applications or developed for
system validation and performance estimation.

There are a number of high-level synthesis tools which
take C/C++ as input, such as SpC [3], Catapult C Syn-
thesis1, and eXCite2. Even though there are some limita-
tions, they can synthesize programs written in C/C++ into

1http://www.mentor.com/
2http://www.yxi.com/

hardware. However, these systems are basically designed to
synthesize hardware as a single module. Namely, when we
design a system consisting of software and hardware, inter-
faces among software/hardware modules, or how they pass
controls and data, are beyond the scope of these systems,
and are attributed to a part of system design tasks.

In Japanese patent 2003-114914, a method of synthesiz-
ing hardware from behavioral description of systems con-
sisting of hardware and software is proposed. This method
enables software to call functions synthesized as hardware
by employing a buffer RAM between the CPU and each
hardware module which is used to transfer the arguments
and the return value. However, since this method does not
allow “call-by-reference,” the passing of large objects such
as arrays will be extremely inefficient if a small portion
of them are referenced or updated. There is also a limita-
tion that the hardware functions cannot call other hardware
functions.

We are developing a high-level synthesis tool, named
CCAP (C Compatible Architecture Prototyper), which
synthesizes arbitrary functions in C program into hardware
modules in a way that they can replace the original soft-
ware functions. The synthesized hardware shares the whole
memory space with the CPU, and data and controls are
transferred through global variables. This enables software
to call hardware functions without the help of extra in-
terfaces. Statements including pointers, “call-by-reference”
using pointers are supported as well as function calls from
the hardware functions to other hardware functions. In this
paper, we propose the key technologies for CCAP, includ-
ing synthesis of variable accesses, function calls using global
variables, and scheduling of function calls.

II. Structure of synthesized system

The synthesizer CCAP transforms a part of the functions
chosen by designers in a C program into hardware and ex-
ecutes the others as software on a CPU. Fig. 1 shows the
structure of the system synthesized by CCAP. One of the
essential points of the system structure is that the syn-
thesized hardware shares the memory space with software.

� � �

� � �
 � � � � � � �

� � �
 � � � � � � �

� � �
 � � � � � � �

� � � � � # �

� & � (#

) & � �) # - � � /

000

Fig. 1. Structure of synthesized system.

The CPU and the hardware modules are connected to the
main memory (a cache is optional) through an arbiter.

The arbiter arbitrates the memory accesses from the
CPU and the hardware modules. Basically, the memory
access requests are processed in order of arrival, but prior-
ity is given to the CPU if the requests are simultaneous.
The arbiter passes each request to the main memory and
raises “stall” signal to the sender until the memory access
completes.

The arbiter is also designed to make the memory accesses
efficient. It has write buffers so that the CPU and the
hardware modules do not need to wait for the completion of
the memory write operation. If read accesses are requested
to the same addresses as the recent write accesses, the data
cached in the buffers are returned. The arbiter also caches
the values of the global variables used for our function call
mechanism (discussed in Section V.) to avoid concentration
of the memory accesses.

Since the hardware and the software can access the iden-
tical address space, data can be transferred through global
variables. The hardware modules may access data objects
allocated by software because the memory accesses using
pointers are converted to indirect memory access, which
are carried out with the load/store units.

III. Flow of synthesis

Fig. 2 shows the flow of the synthesis in the CCAP.
Front-end processing for the input C program such as pars-
ing and hardware-independent optimizations is performed
by SUIF3, and CDFG (Control Data Flow Graph) is gen-
erated from the SUIF’s abstract syntax tree. The CDFG
is then transformed to handle global variables, local ar-
rays, and function calls. After scheduling and binding, the
CDFG is converted into a register transfer level interme-
diate representation, from which a hardware description in
Verilog HDL is generated.

3http://suif.stanford.edu/

� � � � � 	
 �
 �� � � �

� � � � � �
 � � � � � "

$ % & ' % * , . 0 2 3 5 6 8 :

0 3 <

8 > ? A

B �
 � �
 �

C � E � �
 � � � � � "

H I % K M & ' 6 P > R

S < R 5 S

U U X Z

Fig. 2. Flow of synthesis.

�

�

�

� � � �

� �

�
 �

� �

�
 �

� �

� �

�

��

� � � � � �

� � � � � �

(a) CDFG with global variables (b) Transformed CDFG

Fig. 3. CDFG transformation for global variable accesses.

IV. Synthesis of variable accesses

In CCAP, the local variables within the function scopes
are mapped to registers, as are in traditional high-level syn-
thesis systems. On the other hand, the global variables are
allocated to the main memory so that both the CPU and
the hardware modules can access them. The arrays de-
clared global are also allocated to the main memory, while
the arrays local to the functions are synthesized into regis-
ter files to accelerate the accesses.

A. Global variables

We assume that all the global variables shared by the
CPU and the hardware modules are volatile. Namely, the
value read or written to by a certain access is not always
equal to that of the next read access. This is because mul-
tiple hardware and software processes may access an iden-
tical global variable simultaneously and because DMA or
memory mapped I/O may be implemented.

We transform the accesses to the global variables into
load/store operations to the main memory. Fig. 3 (a) shows
a CDFG before transformation (the CDFG generated from
an intermediate representation of SUIF). The result of ad-
dition is assigned to a global variable g, which is used by
succeeding multiplication and addition. At this point, there

� � � � �

�

� 	

�

� �

� � � � �

�

� �

� � �

� � �

� � �

� � � � �
� � � 	 � �

�

� �

�

�

� �

� � � � �
� �
 � � � �

(a) CDFG for a[j]=a[i]*2 (b) Transformed CDFG

Fig. 4. CDFG transformation for local array accesses.

is no distinction between the global variables and the local
variables in terms of the data structure. Fig. 3 (b) shows
the transformed CDFG, where &g is the address of g, and
g0, g1, and g2 are the values of g (which are assigned to reg-
isters and treated in the same way as the local variables).
Str and lod are store and load operations, respectively. If
there are multiple references to a global variable, we insert
a load operation for each reference, for we assume the global
variables are volatile.

We set dependency edges among the inserted lod/str
operations, which are depicted by the arrows in Fig. 3 (b).
We use two kinds of dependency edges; a 0-edge and a
1-edge. The 0-edge allows the scheduler to schedule two
operations in the same cycle, while the 1-edge forces the
subsequent operation to be scheduled to a cycle after the
preceding operation. In Fig. 3 (b), the arrow with dashed
line is a 0-edge, and the arrow with solid line is a 1-edge.
The dependency edges are set based on the order of the
appearances of the corresponding variable accesses in the
source program. We set a 0-edge between lod and lod, and
1-edges for the other combinations.

The addresses of the global variables are obtained from
executable module generated by a linker. During the hard-
ware synthesis process, the addresses of the global variables
are represented in the form of symbolic strings until the reg-
ister transfer level intermediate representation is converted
into the Verilog HDL form, where the symbolic strings are
replaced by the actual addresses.

B. Local arrays

Local array variables are mapped to register files. Basi-
cally, one register file is allocated to each local array. Fig. 4
gives an example of CDFG transformation associated with
local array accesses. In Fig. 4 (a), an array operation cal-
culates the address of the element of the array from its
base address and the index value, which is used by sub-
sequent lod/str operations. The sequence of array and
lod/str operations is transformed into an operation ded-
icated to register file accesses as illustrated in Fig. 4 (b).
Array read:a and array write:a operations take the in-
dex value as input and reads and writes to the register file
for array a, respectively.

� � � � �

� � � � � � �

� � � � �

� � �
 � �

�

� �

� � � � ! �

(a) WAR dependence

� � � � �

� � �
 �
 �

� � � � �

� � � �
 �

�

�

�

� � � � � �

� � � � �

� � �
 � � �

� � � � �

� � �
 � � �

�� �

� � � � � �

(b) RAW dependence (c) WAW dependence

Fig. 5. Simultaneous execution of register file accesses.

� � � � � �
 � �
 � �

� �
 � � � � � � �

(a) program

� � � � �
� � � 	 � �

�

� �

�

� � � � �
� � � 	 � �

�

� �

�
� � � � �

� � � 	 � �

� � � � �
� �
 � � � �

� �

� �

� � � � �
� � � 	 � �

� � � � �
� �
 � � � �

� �

� �

� � � � �
� � � 	 � �

�

� �

�

� � � � �
� � � 	 � �

�

� �

�

(b) Single port (c) Multi-port (2R1W)

Fig. 6. Scheduling of register file accesses.

We assume in our system that the register files may have
multiple ports so that they can transact multiple accesses
in a single cycle. Fig. 5 shows the dependency edges that
must be introduced for correct scheduling. We assume that
the read accesses to the register files are asynchronous and
the write accesses are synchronous. In the case of WAR
dependence, the both operations can be executed in the
same cycle because array read reads the data during the
cycle while array write update the register file at the end
of the cycle. In the case of RAW and WAW dependence,
the subsequent operations must be delayed more than one
cycle. Fig. 6 gives an example of scheduling; the program
in Fig. 6 (a) is scheduled as in Fig. 6 (b) with a single port
register file, as in Fig. 6 (c) with a multiple ports (2 read/1
write) register file.

void caller() {
...

b=callee(e1,...,en);

...

}

⇒

void caller() {
...

ARG callee 1=e1;

...

ARG callee n=en;

RUN callee=1;
WAIT(RUN callee);
b= RET callee;

...

}

Fig. 7. Caller side transformation.

C. Comparison and limitation

SpC [3] synthesizes C programs with pointers by means
of a tagging technique based on static pointer analysis. It
also realizes synthesis of malloc/free statements by intro-
ducing hardware for memory management. However, it can
only handle pointers to local variables; pointers to global
variables or software allocated objects and passing of argu-
ments by reference are beyond the scope of this method.
This may be partly because it aims at designing a sin-
gle hardware module from a C program. On the other
hand, CCAP focuses on pointers to global variables and
data allocated in the stack and heap areas so that syn-
thesized hardware may have interoperability with software
functions. However, in our current implementation, point-
ers to local variables cannot be synthesized. Moreover, local
structs and local arrays whose sizes are not determined at
compile time cannot be handled. We are planning to cope
with these data structures by allocating them to the stack
area.

V. Synthesis of function calls

In this section, we propose a mechanism of calling hard-
ware functions using global variables. We also propose a
new algorithm of the scheduling of function calls which
takes the latencies of the function execution into account.

A. Function calls using global variables

Suppose we are synthesizing a function “callee” into
hardware. We introduce three classes of global variables
associated with this function:

1. RUN callee
Used for the control of starting and finishing of func-
tion “callee.” Its value is either 0 (meaning “not in
execution”) or 1 (“in execution”).

2. ARG callee 1, ... , ARG callee n
Used for passing the values of the arguments.

3. RET callee
Used for passing the return value.

We transform a function call statement into a series of as-
sign statements on these global variables.

int callee(a1,· · ·,an){
body

return z;

}

⇒

int callee(a1,· · ·,an){
while(1){

WAIT(! RUN callee);
a1= ARG callee 1;

...

an= ARG callee n;

body

RET callee=z;
RUN callee=0;

}
}

Fig. 8. Callee side transformation.

Fig. 7 shows the transformation of the statement to call
callee from caller. First, the values of the arguments e1,
..., and en are assigned to the corresponding global vari-
ables ARG callee 1, ..., and ARG callee n. Then, value 1 is
set to ARG callee to indicate to callee to start execution.
Since the value of RUN callee remains 1 until it is turned
off by callee, caller waits for RUN callee to be 0 with the
WAIT operation. Finally, the return value is received via
RET callee.

There may be many ways to implement the WAIT oper-
ation in Fig. 7 including the use of interrupts. However,
we assume the busy loop implementation in this paper
for simplicity, for it requires no extra hardware or soft-
ware. It means to transform WAIT to a C code “while
(RUN callee) {}.” However, as we will explain shortly, we
handle WAIT in hardware function as a single special op-
eration so as to improve flexibility of scheduling.

Fig. 8 shows the transformation on the callee side. Func-
tion callee idles until the value of RUN callee is bring up
to 1 and it starts the execution. Callee receives the value
of the arguments by copying from the global variables
ARG callee 1, ..., and ARG callee n to the local variables
a1, ..., and an. After the calculations in the body, the re-
turn value is set to RET callee and then 0 is assigned to
RUN callee to exit the function.

B. Comparison and limtation

[4] has also proposed a method of synthesizing a part
of functions in a source program into hardware that can
be activated from software. However, it uses a dedicated
buffer RAM between the CPU and each hardware module
to transfer the arguments and the return value. While this
ensures exclusive data exchange between the CPU and each
hardware module, passing of arguments by reference is im-
possible. Moreover, a hardware function cannot call other
hardware functions in this method. These limitations may
force designers to rewrite programs or even redesign the
overall program structures.

In contrast, CCAP enables data transfers using point-
ers. This is especially efficient when only small parts of
large data structures are referenced or updated. Accesses
to dynamically allocated data and hardware function calls
from hardware function are also supported. However, recur-

�� �� �

� �

�� �� �

� �

�� �� �

� 	

 � � �

�� �� �

�� �� �

� 	

� � � � � � � � � � � �
!

� # � & (* ,

- # � �� �� � � ,
. # / �� �� � � ,
� # * & � � ,

4 # . �� �� � � ,
5 # � & � 6 ,

!7

6 # � � � � � � � � ,

� �

:;

< > ? @ < B D E E F F

< > H I < B D E E F F

� 	< > ? @ < B D E E F F

N � N �

� �

� �

�� �� �

� �

(a) Source program (b) while statement (c) WAIT operation

Fig. 9. Scheduling of function call.

s0 : w = LSU.load(& RUN callee)
if (w) → s0 else → s1

s1 :

Fig. 10. State transition of WAIT operation.
(LSU represents load/store unit.)

sive function calls and software function call from hardware
function are not allowed in the current framework.

C. Scheduling of function calls (WAIT operations)

When a hardware function calls another hardware func-
tion, the caller function must wait for the completion of the
callee function with special operation WAIT. The callee
function also must wait until it is indicated to start execu-
tion.

Consider the source program in Fig. 9 (a), where 3 op-
erations ×1, ×2, and ×3 are independent of the arguments
and the return value of the function. If we simply replace
the WAIT operation by a while statement, the CDFG is
broken into three basic blocks as shown in Fig. 9 (b). On
the other hand, if we handle it as a single operation, we will
have a larger basic block and higher flexibility of scheduling
(Fig. 9 (c)).

The WAIT operation and the associated load/store op-
erations (to pass the arguments, the return value, and the
control) can be scheduled in any cycles between the pre-
ceeding and succeeding memory access operations.

The WAIT operation is finally, at the RTL generation
phase, expanded to the state transition in Fig. 10, which is
equivalent to the while loop implementation. The schedul-
ing for the WAIT operation needs some care because it is
a multi-cycle operation whose latency is indefinite; it must
be assigned to an exclusive step where no other operations
are executed.

Although the number of execution cycles of the callee
function is generally indefinite at synthesis time, we can
tell the lower bounds of it from the scheduling result of the
callee function. This fact is capitalized to further improve

� �

�� �� �

�� �� �

� �

�

� �

�� �� �
�� �� �

� � � �

; = > �

�

� �

; = > �

� �

�� ��

� �

�� ��

(a) Scheduling equivalent to
Fig. 9 (c)

(b) Optimized scheduling

Fig. 11. The case when lower bound of length of execution cycles of
function is known.

� �

�� �� �

�� �� �

�� �� �

	 �

	 �

�

� � �

�� �� �

�� �� �

	 � �

� � �
 �
�

	 �

� ��� �� �

	 �

	 �

�

�

(a) Result of list scheduling (b) Adjustment

Fig. 12. Scheduling algorithm for WAIT operation.

the scheduling of the caller function. For instance, sup-
pose the minimum latency of function callee is 4. Then the
scheduling in Fig. 9 (c) is equivalent to that in Fig. 11 (a).
We can reduce the entire execution cycles by moving ×2 to
the idle steps, as shown in Fig. 11 (b).

As a method of finding a scheduling like this, we pro-
pose in this paper a framework that can utilize any exist-
ing algorithm as a scheduling engine, instead of developing
a dedicated new algorithm. The outline of the strategy is
as follows:

1. Schedule the given DFG by an arbitrary scheduling
algorithm, regarding the WAIT operations as multi-
cycle operations with the latencies equal to the lower
bounds of the cycles of the corresponding callee func-
tions. (Fig. 12 (a) shows an example of the scheduling
result.)

2. Then, change each WAIT operation back to a single
cycle operation and place it at the last step of it seen
as the multi-cycle operation. (Fig. 12 (b) ➀.)

TABLE I
Results of synthesis (preliminary).

Cycles Registers
convolution.c LDST 41 20

RF 30 21
fir.c LDST 96 38

RF 28 18
c fir.c while 49 26

wait 40 22
ADD×2, ALU×2, MUL×1, LDST×1

3. Adjust scheduling by 3. (a) and 3. (b) so that an exclu-
sive execution cycle is secured to each WAIT operation
(Fig. 12 (b) ➀).

(a) Mark the operations that finish later than the
WAIT operation. (All the operations, except for
WAIT, which have their any portion in the shaded
region in Fig. 12 (a) are marked.)

(b) Increase the start cycle of the marked operations
by s steps, where s is the maximum length from
the start cycles of the marked operations to that
of the WAIT operation.

VI. Experiments and Results

The CCAP synthesizer has been implemented with Perl
(ver. 5.8.7) and runs on Linux or on the Cygwin environ-
ment. We use SUIF (ver. 1.3.0.1) as the front-end. We use
list scheduling algorithm as the scheduling method, and
greedy algorithm as the binding method.

TABLE I shows some preliminary results with
convolution.c and fir.c from DSPstone4. They are syn-
thesized under the resource restriction of 2 adders, 2 ALUs,
1 multiplier, and 1 load/store unit where all the operations
take 1 cycle except that multiplication takes 2 cycles. The
loops in the source program are unrolled. The row “LDST”
shows the result where the local arrays are allocated to the
main memory while “RF” shows the result where they are
synthesized into register files. The major reason of the fewer
execution cycles in RF is the elimination of address calcula-
tions. c fir.c calls functions twice whose minimum length
of the execution cycle is 4. The row “while” shows the re-
sult where WAITs for the function calls are transformed
into whiles, and “wait” shows that they are scheduled as
operations. The scheduling method we proposed reduces
the length of entire execution cycles.

VII. Conclusion

We have presented a method of handling of variables,
function calls using global variables, and scheduling of func-
tion calls in high-level synthesis system CCAP. CCAP

4http://www.ert.rwth-aachen.de/Projekte/Tools/DSPSTONE/
dspstone.html

makes it possible to replace software function with syn-
thesized hardware and to share data among software and
hardware modules using pointers.

We plan to relax the restrictions of behavioral description
and evaluate the performance of synthesized hardware.

Acknowledgement

We would like to thank N. Umehara and T. Nakatani of
Ritsumeikan University, and the members of Ishiura Lab-
oratory of Kwansei Gakuin University for their discussion
and suggestions.

References

[1] D. Gajski, N. Dutt, A. Wu, and S. Lin: High-Level Synthesis:
Introduction to Chip and System Design, Kluwer Academic Pub-
lishers (1992).

[2] T. Kambe, A. Yamada, K. Nishida, K. Okada, M. Ohnishi,
A. Kay, P. Boca, V. Zammit, and T. Nomura: “A C-Based Syn-
thesis System, Bach, and its Application,” in Proc. ASP-DAC
2001, pp. 151–155 (Jan. 2001).

[3] L. Séméria, K. Sato, and G. De Micheli: “Synthesis of Hard-
ware Models in C With Pointers and Complex Data Structures,”
in IEEE Trans. VLSI Systems, vol. 9, no. 6, pp. 743–756 (Dec.
2001).

[4] Kazuhisa Okada: “Software/Hardware Co-design Method,”
Japanese patent 2003-114914 (2003).

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [594.992 841.890]
>> setpagedevice

