5 論理式の簡単化 (1)

【最重要】このセクションがわからないと 100%不合格

・ カルノー図を用いた最小積和形の導出
・ 真理値表、オンセット表現、論理式からカルノー図への変換

5.1 最小積和形

ここで扱う問題: 二段最小化 (two-level minimization) あるいは AND-OR 最小化

入力: 論理関数の記述 (論理式、真理値表など)

出力: 最小の積和形論理式

積項数が最小、同じ積項数ならリテラル数が最小。

（例）入力（論理式）: \(f(a, b, c, d) = a\overline{b} + c \overline{d} + a\overline{b}c + d \) とする。

下記 (1)〜(3) はいずれも \(f \) の積和形

<table>
<thead>
<tr>
<th></th>
<th>積項</th>
<th>リテラル数</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>(bcd + abd + \overline{bd} + \overline{c})</td>
<td>4</td>
</tr>
<tr>
<td>(2)</td>
<td>(b\overline{c}d + bd + \overline{a}bd)</td>
<td>3</td>
</tr>
<tr>
<td>(3)</td>
<td>(bc + bd + ad)</td>
<td>3</td>
</tr>
</tbody>
</table>

最小積和形は (3)

5.2 カルノー図

5.2.1 基本アイデア

これまでに習った簡単化は、次のような「カルノー図 (Karnaugh map)」を使うと直観的に理解できる。

- 吸収律 \(a + ab = a \)
• 簡単化 \(a + \overline{a}b = a + b \)

\[
\begin{array}{c|c}
 a & b \\
 \hline
 1 & 1 \\
 \hline
 a & \overline{b} \\
\end{array}
\]

\[
\begin{array}{c|c}
 1 & 1 \\
 \hline
 1 & 1 \\
\end{array}
\]

⇒

![Diagram](image)

• 相補律 \(\overline{a}c + a\overline{b}c + \overline{a}bc + abc = (\overline{a} + a)\overline{b}c + (a + \overline{a})bc = \overline{b}c + bc = (\overline{b} + b)c = c \)

\[
\begin{array}{c|c|c|c}
 a & b & c & \overline{a}bc \\
 \hline
 1 & 1 & 1 & \overline{a}bc \\
 1 & 1 & 1 & \overline{a}bc \\
\end{array}
\]

⇒

![Diagram](image)

• コンセンサス【疑】による簡化化 \(ab + bc + \overline{a}c = ab + \overline{a}c \)

\[
\begin{array}{c|c|c|c}
 a & b & c & \overline{a}bc \\
 \hline
 1 & 1 & 1 & \overline{a}bc \\
 1 & 1 & 1 & \overline{a}bc \\
\end{array}
\]

⇒

![Diagram](image)

• 応用 \(\overline{a}cd + abd + \overline{a}bcd + acd + a\overline{c} = ac + bd \)

\[
\begin{array}{c|c|c|c|c}
 a & b & c & d & \overline{a}cd \\
 \hline
 1 & 1 & 1 & 1 & \overline{a}cd \\
 1 & 1 & 1 & 1 & \overline{a}cd \\
\end{array}
\]

⇒

![Diagram](image)

☆ カルノー図のポイント

1. 「輪」が一つの積項に対応
2. 「輪」を併合したり拡張すれば、積項やリテラルが減る
3. 冗長な「輪」を削除すれば、積項が減る

5-2
5.2.2 カルノー図のバリエーション

☆ 通常、「1」のみ記入し「0」の部分は空白にする（見やすいため）

\[
\begin{array}{c}
(n = 2) & a & b & 0 & 1 \\
& & & & \\
& 1 & 1 & 1 & 1 \\
\end{array}
\]

\[
\begin{array}{c}
(n = 3) & a & b & c & 0 & 1 \\
& & & & \\
& 1 & 1 & 1 & 1 \\
\end{array}
\]

\[
\begin{array}{c}
(n = 4) & a & b & c & d & 0 & 1 \\
& & & & & \\
& 1 & 1 & 1 & 1 & 1 & 1 \\
\end{array}
\]

\[
\begin{array}{c}
(n = 5) & a & b & c & d & e & f & 0 & 1 & 10 \\
& & & & & & & \\
000 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
001 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
011 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
010 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
110 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
111 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
101 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
100 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\end{array}
\]

\[
\begin{array}{c}
(n = 6) & a & b & c & d & e & f & 0 & 1 & 10 \\
& & & & & & & \\
000 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
001 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
011 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
010 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
110 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
111 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
101 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
100 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\end{array}
\]
練習 5.1 次の論理関数のカルノー図を示せ

1. \(f(a, b, c) = abc + \overline{ac} + \overline{b} \)

2. \(g(a, b, c, d) = \overline{a}b + c + \overline{ab}d + ab\overline{d} \)

5.3 カルノー図による最小積和形の求め方

例題 5.1 次のカルノー図で示される論理関数 \(f(a, b, c, d) \) の最小積和形を求めよ。

(1) \(f \) の全ての主項を求める

主項 … \(f \) に包含される積項のうち、他の積項に包含されないもの

要は「\(f \) からはみ出さない、できるだけ大きな「輪」
(厳密な定義については付録参照)

(2) \(f \) の主項による最小被覆を求める

\(f \) の全ての最小項（カルノー図中の「1」）を覆う、最小数の主項を求める
要は「できるだけ少ない主項で全ての1を覆いつくす」

\[
\begin{array}{c|c|c|c|c}
 & b & c & d & e \\
\hline
a & 1 & 1 & 1 & 1 \\
\hline
b & 1 & 1 & ad & \\
\hline
c & 1 & 1 & 1 & 1 \\
\hline
d & 1 & 1 & 1 & 1 \\
\end{array}
\]

2つの主項で被覆可能 \((b\overline{d})\) は不要

これより最小積和形は

\[
f(a, b, c, d) = \overline{ab}c + ad
\]

注意1 主項は「大きな輪」なら何でもいいわけではなく、積項であるものに限られることに注意

☆4変数関数の主項の例は付録参照

要は輪の中の1の数が1, 2, 4, 8, 16, \ldots のように2のべき乗になっていればよい
注意 2 最小積和形は複数存在することがある

\[
\begin{array}{c|c|c}
 & a & 1 \\
\hline
1 & 1 & 1 \\
1 & 1 & 1 \\
\end{array}
\]

の主項は 6 つ

被覆の方法は 2 通り

\[
\begin{array}{c|c|c}
 & a & b \\
\hline
1 & 1 & 1 \\
1 & 1 & 1 \\
\end{array}
\]

従って最小積和形も 2 通り

\[
c + \overline{b}c + \overline{a}b \text{ または } \overline{c} + \overline{b}c + \overline{a}b
\]

練習 5.2 次のカルノー図で示される論理関数の最小積和形を求めよ。

1.

\[
\begin{array}{c|c|c}
 & a & 1 \\
\hline
1 & 1 & 1 \\
1 & 1 & 1 \\
\end{array}
\]

2.

\[
\begin{array}{c|c|c|c|c}
 & a & 1 & 1 & 1 \\
\hline
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 \\
\end{array}
\]

5.4 真理値表, オンセット表現, 論理式からの最小化

5.4.1 真理値表, オンセット表現からカルノー図への変換

☆ 真理値表とカルノー図のマス目対応さえ理解すれば OK 【重要】
2 変数

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>$f(a, b)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

\iff

3 変数

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>c</th>
<th>$f(a, b, c)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

\iff

4 変数

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>$f(a, b, c, d)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

\iff

例題 5.2
次の真理値表で示される論理関数のカルノー図を示せ。

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>c</th>
<th>$f(a, b, c)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

対応するマス目に 1 を書き込めばよい。
例題 5.3 オンセット表現で示される論理関数 \(g(a, b, c, d) = \sum(0, 3, 5, 6, 8, 9, 10, 15) \) のカルノー図を示せ。

0, 3, 5, 6, 8, 9, 10, 15 に対応するマス目に 1 を書き込めばよい。

練習 5.3 次の真理値表. オンセット表表現カルノー図に変換せよ

1. \(f(a, b, c) \)

<table>
<thead>
<tr>
<th>(a)</th>
<th>(b)</th>
<th>(c)</th>
<th>(f(a, b, c))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

2. \(f_{\text{prime}}(x_3, x_2, x_1, x_0) = \sum(2, 3, 5, 7, 11, 13) \)

<table>
<thead>
<tr>
<th>(x_3)</th>
<th>(x_2)</th>
<th>(x_1)</th>
<th>(x_0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>01</td>
<td>11</td>
<td>10</td>
</tr>
</tbody>
</table>

5.4.2 一般の論理式からカルノー図への変換

等含む式の場合には、カルノー図上で論理式の計算を行えば効率的
例題 5.4 $p_3(a, b, c) = a \oplus b \oplus c$ のカルノー図を求め、これより最小積和形を求めよ

![例題 5.4 の図](image)

よって $p_3(a, b, c) = \overline{ab}c + \overline{ab} \overline{c} + abc + a \overline{bc}$

☆ またに、$p_4(a, b, c, d) = a \oplus b \oplus c \oplus d$ のカルノー図は下のようになり、8 個の最小項がすべてが主項となり、しかもこの 8 個の主項がすべて被覆に必要になる。

![例題 5.4 の図](image)

☆ 一般に、$p_n(x_0, x_1, \ldots, x_{n-1}) = x_0 \oplus x_1 \oplus \cdots \oplus x_{n-1}$ はパリティ関数（parity function）と呼ばれるが、積項数は 2^{n-1} となる。積和形で表現すると大変効率が悪い例として知られている。

例題 5.5 $g(a, b, c, d) = c(b \oplus \overline{d}) \oplus a \overline{a}$ の最小積和形を求めよ。

![例題 5.5 の図](image)

5-9
よって \(g(a, b, c, d) = \overline{a} \overline{c} \overline{d} + bcd + \overline{a} \overline{c} \overline{d} \)
付録 5.1 4 変数論理関数の全主項

<table>
<thead>
<tr>
<th>ab</th>
<th>cd</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>00</td>
</tr>
</tbody>
</table>

リテラル数 4 のもの (すなわち最小項)

リテラル数 3 のもの

リテラル数 2 のもの

リテラル数 1 のもの

リテラル数 0 のもの

5-11
付録 5.2 主項の定義

用語 (復習)

リテラル (literal)

論理変数またはその論理否定をリテラルと呼ぶ

例) \(x_1, x_2, x_3 \) が論理変数のとき, \(x_1, x_2, x_3, \overline{x_1}, \overline{x_2}, \overline{x_3} \) は全てリテラルである

積項 (あるいは項)

リテラルの論理積を積項 (ただし同じ変数を含まない) と呼ぶ

例) \(x_1, x_2, x_3 \) が論理変数のとき, \(x_1 \overline{x_2}, \overline{x_1} x_2 \overline{x_3}, x_2 \) などは積項である

最小項

\(\overline{x_1} x_2 \overline{x_3} \) のようにすべての変数を含む項のことを最小項という. (真理値表の 1 マスに相当)

オンセット

論理関数 \(f \) の値を 1 にするような入力の組合せを \(f \) のオンセットといい, onset(\(f \)) と書く.

例) \(f(a, b, c) = ab + \overline{ac} \) のとき onset(\(f \)) = \(\{(1,1,0),(1,1,1),(0,0,1),(0,1,1)\} \)

包含関係

2 つの論理関数 \(f \) と \(g \) において, onset(\(f \)) \(\supseteq \) onset(\(g \)) を成立するととき, \(f \) は \(g \) を包含するといい, \(f \supseteq g \) (あるいは \(g \subseteq f \)) と書く

\[
\begin{array}{|c|c|c|c|}
\hline
ab \setminus cd & 00 & 01 & 11 & 10 \\
\hline
00 & & & & \\
01 & & & & \\
11 & 1 & 1 & 1 & 1 \\
10 & & 1 & 1 & \\
\hline
\end{array}
\]

例) \(f = ab + \overline{ac} \)

\[
\begin{array}{|c|c|c|c|}
\hline
ab \setminus cd & 00 & 01 & 11 & 10 \\
\hline
00 & & & & \\
01 & & & & \\
11 & 1 & 1 & 1 & 1 \\
10 & & 1 & 1 & \\
\hline
\end{array}
\]

\(g = ac \overline{d} \)

\[
\begin{array}{|c|c|c|c|}
\hline
ab \setminus cd & 00 & 01 & 11 & 10 \\
\hline
00 & & & & \\
01 & & & & \\
11 & & 1 & & \\
10 & & 1 & & \\
\hline
\end{array}
\]

のとき, \(f \) は \(g \) を包含する (\(f \supseteq g \))

内項 (implicant)

論理関数 \(f \) に対し, 積項 \(t \) が \(t \subseteq f \) を満たすとき, \(t \) は \(f \) の内項であるという.

例) \(f = ab + \overline{ac} \)

\(ac \overline{d} \) は \(f \) の内項である

\(ab \) や \(\overline{ab} \) も \(f \) の内項である

\(f \) の内項をすべて列挙すると,

\(ab, \overline{ac}, abd, \overline{acd}, abcd, \overline{abcd}, \overline{abcd} \) （リテラルからなるもの最小項）

\(ab \overline{c}, abc, abd, \overline{abc}, \overline{ac}, acd, \overline{acd} \) （リテラルからなるもの）

\(ab, ac \) （リテラルからなるもの）

主項 (あるいは素項, prime implicant)

論理関数 \(f \) の内項のうち, 他の内項に含まれられないものを主項という

(つまり, \(f \) に包含される一番大きな項のこと)

\(f = ab + \overline{ac} \) の主項は, \(ab \) と \(ac \)
練習問題の解答例

練習 5.1

1.

2.

練習 5.2

1.

2.

または

ac + b̄d + b̄c d + ab

練習 5.3

1.

または

2.

Nagisa ISHIURA

5-13