
日本ソフトウェア科学会第 30 回大会 (2013 年度) 講演論文集

Formalization of the Qualitative Spatial

Reasoning of Superposition of Rectangles in

Proof Assistant

Fadoua Ghourabi and Kazuko Takahashi
In qualitative spatial reasoning, objects are treated qualitatively, i.e. without performing numerical computa-

tion. In this research, we qualitatively reason about superposition of rectangles with visibility requirements.

A method is proposed to automatically superpose rectangles while respecting user’s specification of visibility

criteria. We use proof assistant Isabelle/HOL to strengthen the proposed method. A rectangle is a resizable

object that is divided into visible regions and non-visible regions. The superposition of two rectangles is

computed from the superposition of their regions. Rectangles are categorized into groups that are formal-

ized as equivalence classes. Using Isabelle/HOL, we prove properties of effectiveness and validity about

superposition on the equivalence classes.

1 Introduction

In the 20th century, questions of mathematical

rigour were throughly examined by logicians. In

particular, the foundation of mathematical proof

has been re-examined. Pen-and-paper proofs are

often concise and intuitive but prone to present log-

ical flaws, skip important steps or omit important

cases. We, therefore, became discontented to work

with a mere definition of proof. Proof assistants are

increasingly used to provide mathematical proofs

where each step is transparent and, thus, the in-

volved logical reasoning can be checked.

The purpose of this research is to extend the use

of proof assistants to provide formal proofs in qual-

itative spatial reasoning (QSR). In QSR, objects

are treated qualitatively, i.e. without performing

numerical computation. QSR has a wide range of

applications in geographical information systems,

Formalization of the Qualitative Spatial Reasoning of

Superposition of Rectangles in Proof Assistant

Fadoua Ghourabi and Kazuko Takahashi,関西学院大学
理工学部, School of Science and Technology, Kwansei

Gakuin University.

spatial databases, etc. However, QSR methods rely

on pen-and-paper proofs. As far as we know, there

is no formal presentation of QSR methods using

proof assistants. Rigorous formalization and for-

mal proofs are required when we tackle some of

QSR problems, e.g. correctness of QSR programs.

This research is an ongoing work based on the

QSR method presented in [1]. The method deals

with the problem of superposing rectangles, called

units, with requirements of visibility. In other

words, rectangles are spatial objects that include

parts that should be visible. The superposition

should keep those parts visible. Possible applica-

tion of this QSR theoretical study is the superpo-

sition of windows of computer software with better

end-user experience of visibility.

In this research, we aim at improving the theory

of superposition of rectangles by proposing rigor-

ous formalization using proof assistant. It aims at

checking the results which were established based

on pen-and-paper proofs and revising them when

necessary. We do not create new QSR method but

rather we strengthen the formalization of an exist-

ing one using proof assistant. We choose to work

with Isabelle/HOL proof assistant [2] to formalize

the superposition of rectangles. In the rest of the

paper, we use notations and symbols as defined by

the syntax of Isabelle/HOL. We also use Isar [3]

framework in Isabelle/HOL. Isar provides relatively

structured proofs where it is possible to follow the

reasoning involved in the proof. It is possible to

alternate Isar proof structure with proofs adopted

in classical Isabelle/HOL.

The rest of this paper is organized as follows.

In Sect. 2, we present a formalization of unit. In

Sect. 3, we define valid unit. In Sect. 4, we explain

the superposition of rectangles. We prove proper-

ties about the results of superposition in Sect. 5

and we discuss the revisions that we undertook in

Sect. 6. Finally, in Sect. 7, we summarize and point

out directions of further research.

2 Representation of Unit in

Isabelle/HOL

The spatial object that we investigate is a rect-

angle called unit. Some parts of a unit are required

to be visible. We assume that the visible parts

are rectangles and model them as white rectangular

plates. The parts that can be hidden are regarded

as black rectangular plates. We also assume that

the size of a unit can change in a similar fashion to

the way software windows are shrunk or expanded.

2. 1 Black Plates

In this paper, we restrict ourselves with units

with at most two black plates. Let U be a rect-

angular unit of size l × h.

• If U has one black plate p, then the size of

p is either l × v or u × h, where 0 ≤ u ≤ l

and 0 ≤ v ≤ h. Each of the units in Fig. 3

has one black plate that is spread along the

length/height of the unit.

• If U has two black plates p1 and p2, then neces-

sary at least one of them is of size u×h or l×v,

where 0 ≤ u ≤ l and 0 ≤ v ≤ h. Furthermore,

p1 and p2 must be overlapping. The overlap-

ping part forms a rectangular shared area de-

noted by p1 u p2 (see the units in Fig. 2(c)).

From the white and black plates, we compute re-

gions.

2. 2 Regions of Unit

A region can be black, white, grey, or undefined.

We denote by b, w, g and None the black, white,

grey and undefined regions, respectively. We work

with units that are located on the 2D plane. We

call the 2D plane the grey region. b and g regions

can be hidden while w regions should be visible.

In Isabelle/HOL, we define the datatype region as

follows.

datatype region = None | b | w | g

For a unit U of size l × h, the regions of U are

determined as follows.

(a) Any region of U (black or white) is of size

u × v, where 0 ≤ u ≤ l and 0 ≤ v ≤ h.

(b) A white plate of U is a w region.

(c) If p is the only black plate of U , then p is

also the only b region of U .

(d) If p1 and p2 are two distinct black plates

of U , then together they generate 3, 4 or 5

b regions depending on their placements (see

Fig. 1). Note that the area p1up2 is one of the

b regions generated by p1 and p2.

We establish a relation of adjacency on the re-

gions of U .

Definition Two regions ri and rj of U are adja-

cent, denoted by ri ∼ rj , if they share an edge.

The values of l and h are variable. As a conse-

quence, the sizes of the regions of U change while

preserving their positions in U as well as the rela-

tion ∼ and operation u.

(a) (b) (c)

図 1 3, 4 and 5 b regions generated by two

black plates

Next, we define the core of a unit.

Definition The core region of unit U , denoted by

CU , is a b region defined as follows:

• If U has only one b region, then CU = p.

• If U has two distinct black plates p1 and p2,

then the core of U is the shared area between

p1 and p2, i.e. CU = p1 u p2 .

• U has no b region, then CU is regarded as a

tiny b region.

Since a unit has at most two black plates as estab-

lished in the assumptions, then a unit has one and

only one core. The unit of Fig. 2(c) has two black

plates that share a rectangular area highlighted in

darker black. The shared area represents the core.

We represent a unit U as sequence of 4 re-

gions that are adjacent to CU . We write U =

〈r1, r2, r3, r4〉, where CU ∼ ri, 1 ≤ i ≤ 4. Re-

gions r1, r2, r3, and r4 are adjacent to CU in a clock-

wise order starting from the upper adjacent region.

For instance, the representations of the units in

Figs. 2(b), 3(a) and 6(a) are 〈w, w, w, w〉, 〈w, g, g, g〉
and 〈b, g, w, b〉, respectively.

datatype

representation = Rep region region region region

We define functions up, rt, dn and lt that re-

turn the upper, right, below and left adjacent re-

gions, respectively. We show the definition of up in

Isabelle/HOL. The rest are defined similarly.

fun up ::" representation ⇒ region"

where "up (Rep r1 r2 r3 r4) = r1"

Function regions returns the set of all the 4 re-

gions of a representation of a unit.

fun regions::"representation ⇒region set"

where "regions U ≡ {up U, rt U, dn U, lt U}"

3 Valid Unit

When working with computer, we often rear-

range software windows by dragging, resizing, su-

perposing, etc. until obtaining better visibility. A

superfluous information in a window, e.g. adver-

tisement column in a webpage, can be hidden and

superposed by an important information in another

window. The problem of arranging software win-

dows is regarded as the problem of superposing

rectangles while keeping all important information

visible. We use unit to model a software window

and regions to specify which window parts are im-

portant, and thus, should be visible. We examine

how applications divide the windows into regions

and, analogously, we divide units into regions. We

restrict ourselves to unit structures that are de-

picted in Fig. 2 ∼ 9.

(a) B unit (b) W unit (c) PLUS unit

図 2 B, W and PLUS units

We have 3 cases of fitting black plates into a unit

while respecting our assumptions in Sect. 2.

• No black plate (W type unit in Fig. 2(b))

• One black plate (B, I1 and I2 type units in

(a) (b) (c)

(d)

図 3 I1 type units

(a) (b)

図 4 I2 type units

Figs. 2(a), 3 and 4, respectively)

• Two black plates (L1, L2, L3, T1, T2, PLUS

type units in Figs. 5, 6, 7, 8, 9 and 2(c), re-

spectively)

For each unit type in Fig. 2 ∼ 9, we choose a

representative unit as follows.

abbreviation "B ≡ Rep g g g g"

abbreviation "W ≡ Rep w w w w"

abbreviation "I1 ≡ Rep w g g g"

abbreviation "I2 ≡ Rep w g w g"

abbreviation "L1 ≡ Rep b g g b"

abbreviation "L2 ≡ Rep b g w b"

abbreviation "L3 ≡ Rep b w g b"

abbreviation "T1 ≡ Rep b b g b"

abbreviation "T2 ≡ Rep b b w b"

abbreviation "PLUS ≡ Rep b b b b"

(a) (b)

(c) (d)

図 5 L1 type units

(a) (b)

(c) (d)

図 6 L2 type units

For instance, representative unit of I1 type

is chosen to be Rep w g g g which correspond

to the unit in Fig. 3(a). Furthermore, we in-

troduce the set of representative units T0 =

{B, W, I1, I2, L1, L2, L3, T1, T2, PLUS}.
The units depicted in Fig. 2 ∼ 9 are called valid

units that we will define more accurately in the fol-

(a) (b)

(c) (d)

図 7 L3 type units

(a) (b)

(c) (d)

図 8 T1 type units

lowing sections.

3. 1 Rotation

A unit rotation is a π
2

counter-clockwise rotation.

A rotation of a unit U = 〈r1, r2, r3, r4〉 is a unit

U ′ = 〈r2, r3, r4, r1〉. For instance, U1 = 〈b, g, g, b〉

(a) (b)

(c) (d)

図 9 T2 type units

(a) U1 (b) U2 (c) U3

図 10 Rotations of unit U1 = 〈b, g, g, b〉

in Fig. 10(a) is rotated to obtain U2 = 〈g, g, b, b〉 in

Fig. 10(b). We introduce function rotate to com-

pute the rotation of a representation.

definition rotate::

"representation ⇒ representation"

where

"rotate U = Rep (rt U) (dn U) (lt U) (up U)"

We can carry out counter-clockwise rotation,

successively. We define the recursive function

rotate succ that takes natural number n and

return a function of type representation ⇒
representation. The call rotate succ n gives rise

the identity function if n = 0, otherwise n compo-

sitions of function rotate.

primrec rotate_succ::

"nat ⇒ (representation ⇒ representation)"

where

"rotate_succ 0 = id"|

"rotate_succ (Suc n) = rotate o rotate_succ n"

In Fig. 10, we can easily check that U2 =

rotate succ 1 U1 and U3 = rotate succ 2 U1 =

rotate ◦ rotate U1.

We prove few lemmas about successive rotation.

These are intermediate lemmas that are used as ele-

mentary steps in more elaborate proofs. We briefly

explain some of these lemmas.

If we rotate a unit U successively 4 times then

we obtain U . We prove the following lemma to

handle the cases where we apply n ≥ 4 successive

rotations.

lemma rotate_succ_n:

"
V

U::representation.
V

n::nat.

rotate_succ n U = rotate_succ (n mod 4) U"

We also prove that function rotate is bijective

and invertible. The inverse function rotate−1 =

rotate succ 3. Based on this result, we prove the

following lemma about successive rotation.

lemma rotate_succ_inverse:

"
V

U1 U2:: representation.
V

n::nat.

(rotate_succ n U1 = U2) =⇒
(U1= rotate_succ (3*n) U2)"

3. 2 Equivalence Classes

To compute all the units in Fig. 2 ∼ 9, we

use the formalization of equivalence classes in Is-

abelle/HOL [4]. We begin by defining a relation

unitrel. Let U1 and U2 be two units. We have

(U1, U2) ∈ unitrel if U2 is obtained by successively

rotating U1.

definition unitrel::

"(representation × representation) set"

where

"unitrel ≡ {(U1, U2)| U1 U2. same_type U1 U2}"

Given two units U1 and U2, the predicate

same type returns True if U1 and U2 are of the

same type. In other words, it checks whether U2

is obtained by successive rotation of U1. We give

the definition of same type in the following.

definition same_type::

"representation ⇒ representation ⇒ bool"

where

"same_type U1 U2 ≡
∃ n::nat. U2 = rotate_succ n U1"

We prove that unitrel is reflexive, transitive and

symmetric, and hence we deduce that unitrel is an

equivalence relation.

lemma "equiv UNIV unitrel"

Predicate equiv verifies whether unitrel is an

equivalence relation on the set UNIV, which is Is-

abelle/HOL polymorphic constant that denotes the

universal set. In our case the elements of UNIV are

of type representation × representation.

The Isabelle/HOL expression unitrel‘‘{U} de-

notes the equivalence class generated by unit U ,

i.e. unitrel‘‘{U}={R | (U , R) ∈ unitrel}. A

unit U is valid if and only if U is an element of the

union of the equivalence classes generated by the

representative units in T0. We have the following

definition of valid units.

definition unit :: "representation set"

where

"unit ≡ (
S

y∈T0. unitrel‘‘{y})"

The advantage of formalizing valid units using

Isabelle/HOL definition of equivalence classes ap-

pears when we carry out proofs of properties about

superposition of units, which will be explained fur-

ther in Sect. 5.

4 Superposition of Units

We call puton the operation that performs super-

position of units.

4. 1 Puton Operation

First, we define a partial function on that com-

putes superposition of regions.

fun on:: " region ⇒ region ⇒ region"

where

"on b b = b" |

"on b w = w" |

"on w b = None" |

"on w w = None" |

"on g g = g" |

"on g x = x" |

"on x g = x" |

"on None _ = None"|

"on _ None = None"

Now, superposing two units U1 and U2 by putting

U2 on U1 means that we put CU2 on CU1 . The core

of the resultant unit U3 is CU3 = CU2 = CU1 . Units

U1 and U2 can be resized if necessary so that the

cores have the same size. As explained in Sect. 2,

the representation of U3 is a sequence of the re-

gions that are adjacent to CU3 . Function on rep

computes the resultant unit by applying function

on on the regions of U1 and U2.

definition on_rep::"representation ⇒ representation

⇒ representation"

where

"on_rep U1 U2 ≡
(if U1=W then Undefined else

Rep (on (up U1) (up U2)) (on (rt U1) (rt U2)) (on

(dn U1) (dn U2)) (on (lt U1) (lt U2)))"

Note that it is impossible to put any unit on W

type unit. Therefore, in that case, on rep gives rise

to the Undefined unit 〈None, None, None, None〉.
We say that on rep fails when the computed unit

has at least one None region. We define predicate

on rep fail to check wether on call in on rep re-

turns None.

A function merge was introduced to obtain better

result of superposition [1]. An example of utiliza-

tion of merge is depicted in Fig. 11. When we put

U2 of type I1 on U1 of type L3, part of the non-

core b region of U1 is merged with CU2 to form one

core region. We obtain a unit of type I2. Function

merge is defined in Isabelle/HOL according to its

description in [1].

(a) (b)

図 11 Superposition and merge of I1 type unit

and L3 type unit

Finally, we define the function puton that calls

merge ◦ on rep.

definition puton::"representation ⇒ representation

⇒ representation"

where

"puton R1 R2 ≡ (if ¬(on_rep_fail R1 R2) then (merge

(on_rep R1 R2)) else Undefined)"

4. 2 Properties

When superposing two units, we check proper-

ties of effectiveness and validity about the result

of puton. Function puton gives rise to an effective

unit if it has at most one b region. The result of

puton is valid if the computed unit is valid.

definition effective::"representation ⇒ bool"

where

"effective R ≡ ¬ (b ∈ (regions R))"

definition valid::"representation ⇒ bool"

where "valid R ≡ R ∈ unit"

The effectiveness and validity of the result of

operation puton are discussed in [1]. The paper

presents several general statements on these prop-

erties. Our objective is to check the correctness

of these statements by formally proving/disproving

them using Isabelle/HOL.

5 Theorems about Effectiveness and

Validity

In Sect. 3, we explained that the units of in-

terest are grouped into equivalence classes. Is-

abelle/HOL provides a useful predicate respect.

Let U be a unit and f be a function. f respect

unitrel‘‘{U} is true if f(Ui) = f(Uj) for any

{Ui, Uj} ⊆ unitrel‘‘U . Therefore, from a prop-

erty that respects the equivalence classes, we can

build a proof that check properties for a represen-

tative of the equivalence class. This simplifies the

proofs as we don’t have to enumerate all the com-

binations and check the properties for all the cases,

i.e. all possible superposition of units.

We list the theorems that we proved. The de-

tailed proofs are available online [5].

5. 1 Superposition on B and W Type

For clarity, we introduce predicate puton sucess

that simply gives the negation of on rep fail.

Theorem 5.1. It is impossible to place any unit

on the W type unit in Fig. 2(b).

∀R : representation.

R ∈ unit ⇒ ¬ puton sucess W R
(1)

Theorem 5.2. Superposition of any unit on B type

(see Fig. 2(a)) is always successful.

∀R : representation.

R ∈ unit ⇒ puton success B R
(2)

Theorem 5.3. Superposition of any unit on B type

unit is always valid.

∀R : representation. R ∈ unit ⇒ valid B R (3)

We call straight-plate-unit a unit of I1 or I2

type depicted in Figs. 3 and 4. Cross-plate-unit

means units of types L1, L2, L3, T1, T2 and

PLUS in Figs. 5, 6, 7, 8, 9 and 2(c). To sim-

plify our formulas in the following theorems, we de-

fine the sets SP = unitrel‘‘{I1} ∪ unitrel‘‘{I2}
and CP = unitrel‘‘{L1} ∪ unitrel‘‘{L2} ∪
unitrel‘‘{L3} ∪ unitrel‘‘{T1} ∪ unitrel‘‘{T2} ∪

unitrel‘‘{PLUS}. We prove the following.

Theorem 5.4. Superposition of a unit R on B type

unit is effective if and only if R is either straight-

plate-unit or B type unit or W type unit.

∀R : representation.

R ∈ SP ∪ unitrel‘‘B ∪ unitrel“W ≡
effective (puton B R)

(4)

5. 2 Superposition on Straight-plate-units

Theorem 5.5. When successful, the superposition

of straight-plate-unit on a straight-plate-unit is al-

ways effective.

∀R1 R2 : representation.

{R1, R2} ⊆ SP ∧ puton success R1 R2 ⇒
effective (puton R1 R2)

(5)

Theorem 5.6. When successful, the superposition

of straight-plate-unit on straight-plate-unit is not

always valid.

∃R1 R2 : representation.

{R1, R2} ⊆ SP ∧ puton success R1 R2 ∧
¬ valid (puton R1 R2)

(6)

Example Using command nitpick of Isabelle/HOL,

we generate a counter example for the formula

∀R1 R2 : representation. {R1, R2} ⊆ SP ∧
puton success R1 R2 ⇒ valid (puton R1 R2),

which is a solution for formula (6). Suppose that

R1 = 〈g, w, g, w〉 of type I2 (depicted in Fig. 12(a))

and R2 = 〈g, g, w, g〉 of type I1 (depicted in

Fig. 12(b)). The unit in Fig. 12(b) is resized so that

its core has the same size as the core in Fig. 12(a).

Fig. 12(c) shows the result of putting R2 on R1.

5. 3 Superposition on Cross-plate-unit

Theorem 5.7. When successful, the superposition

of straight-plate-unit on a cross-plate-unit is not al-

ways effective.

∃R1 R2 : representation.

R1 ∈ CP ∧ R2 ∈ SP ∧ puton success R1 R2 ∧
¬ effective (puton R1 R2)

(7)
Theorem 5.8. When successful, the superposition

(a) I2 type unit (b) I1 type

unit

(c) Invalid

unit

図 12 Invalid unit obtained by superposing two

straight-plate-units

of straight-plate-unit on a cross-plate-unit is not al-

ways valid.

∃R1 R2 : representation.

R1 ∈ CP ∧ R2 ∈ SP ∧ puton success R1 R2 ∧
¬ valid (puton R1 R2)

(8)
Example Figure 13 shows the result of putting

R2 = 〈g, g, g, w〉 of type I1 on R1 = 〈b, b, w, b〉 of

type T2. The puton operation is successful but nei-

ther effective nor valid.

6 Revisions

Due to the usage of proof assistant, we revised

the original QSR method presented in [1]. The re-

visions that we undertook are summarized in the

following.

[Reformulation] Only rotation is used to com-

pute the valid unit. Reflection was proposed in

(a) T2 type

unit

(b) I1 type

unit

(c) Result of

superposition

図 13 Ineffectiveness and invalidity of

R2 = 〈g, g, g, w〉 on R1 = 〈b, b, w, b〉

the original paper, but we choose to replace it by

successive rotations. This modification allows sim-

pler definition based on equivalence classes. Fur-

thermore, in the original paper, validity property

is judged by checking the values of the regions of

before and after applying puton operation. The

idea of validity property is to obtain a valid unit

by applying puton operation. We therefore simply

check that the result of puton is in the union of

equivalence classes.

[Precision] The Theorems presented in Sect. 5

are formalization of statements in the original pa-

per. We provide more precise declaration of the

properties to be proved. For instance, the origi-

nal paper doesn’t explicitly specify that properties

of effectiveness and validity should be checked on

successful puton operations. Unlike the prose, the

formalization in Isabelle/HOL must state this con-

dition.

[Correction] Property of validity as defined in

[1] is wrong for some cases that were overlooked.

The new definition of validity tackles these cases

correctly. Furthermore, the statement of Theo-

rem 5.4 omits B and W type units. These units

should be included otherwise the theorem can not

be proved.

7 Conclusion

In this paper, we presented the highlight of

formalization of superposition of rectangles in Is-

abelle/HOL. We used the formalization to prove

properties of effectiveness and validity about the re-

sult of puton operation. The formalization in proof

assistant did add rigour by revealing omissions or

imprecise statements in some of the definitions and

proofs in the original work. We believe that a pro-

posed qualitative spatial reasoning method must be

accompanied by formalization in proof assistant to

underline its accuracy and correctness.

As this is an ongoing work, we plan to extend

the formalization and add operation of embedding,

which is another definition of superposition of unit.

We plan to compare the results of puton and em-

bedding operations. We also plan to refine the the-

orems in Sect. 5 and add general conditions to spec-

ify the cases when puton is effective or valid.

8 Acknowledgments

This work is supported by JSPS KAKENHI

Grant No. 25330274. The first author is supported

by a postdoctoral fellowship at Kwansei Gakuin

University.

参 考 文 献

[1] T. Konishi and K. Takahashi. Superposition of

Rectangles with Visibility Requirement: A Qualita-

tive Approach. International Journal on Advances

in Software, 4(3 & 4):422–433, 2011.

[2] T. Nipkow, L. C. Paulson, and M. Wenzel. Is-

abelle/HOL — A Proof Assistant for Higher-Order

Logic, volume 2283 of LNCS. Springer, 2002.

[3] M. Wenzel. The Isabelle/Isar Reference Manual,

2002. http://www.cl.cam.ac.uk/research/hvg/Isabelle/

dist/Isabelle2013/doc/isar-ref.pdf.

[4] L. C. Paulson. Defining Functions on Equiv-

alence Classes. ACM Transactions on Computa-

tional Logic, 7(4):658–675, 2006.

[5] F. Ghourabi. Qualitative Spatial Reasoning of

Superposition of Rectangles - Isabelle Proofs, 2013.

http://www.i-eos.org/Members/fadoua-ghourabi.

