20_pre 2020/11/19 13:05

Table of Contents

- 1 線形代数
 - **1.1** 基底, 次元, 成分(15点)
 - 1.2 Ker, Im(15点)
- 2 微積分
 - 2.1 正規分布の概形(15点)
 - <u>2.2 積分(15点)</u>
- 3 センター試験原題(10点)
 - **3.1 2**
- 4 数值改変(30点)

2020年度 数式処理演習 pre試験問題

cc by Shigeto R. Nishitani, 2020/11/19 実施

• file: ~/symboic_math/exams/20_pre_ans.ipynb

線形代数

基底,次元,成分(15点)

 \mathbf{R}^3 において $a_1 = (2, -1, 0)$, $a_2 = (1, 0, 1)$, $a_3 = (1, 2, -2)$ は基底をなす。 a = (-4, -2, 1)の基底 $\mathcal{B} = \{a_1, a_2, a_3\}$ に関する成分を求めよ.

Ker, Im(15点)

$$A = \begin{pmatrix} 1 & 0 & -1 & -2 \\ -2 & 1 & 3 & 5 \\ 1 & 1 & 0 & -1 \end{pmatrix}$$
とする. R^4 から R^3 への線形写像 f を $f(x) = Ax$ で与えるとき、 f のIm f お

よびKerfの次元と1組の基底を求めよ

20_pre 2020/11/19 13:05

微精分

正規分布の概形(15点)

関数

$$f(x) = e^{-x^2}$$

の増減、極値、凹凸を調べ、曲線y = f(x)の概形を描け、

積分(15点)

関数

$$f(x) = \frac{1}{\cos x + 1}$$

の不定積分を求めよ、また、 $x=0..\pi/2$ の定積分を求める

センター試験原題(10点)

(2017大学入試センター試験 追試験 数学II・B 第2問)

関数 $f(x) = x^3 - 5x^2 + 3x - 4$ について考える。 関数f(x)の増減を調べよう。 f(x)の導関数は

f'(x)= $extbf{r}$ $x^2 extbf{l}$ x+ $extbf{I}$ であり. f(x)はx= $extbf{r}$ で極大値,x= $extbf{t}$ で極小値をとる. よって, $x\geqq 0$ の範囲におけるf(x)の

最小値は クケコ である.

また、方程式f(x)=0の異なる実数解の個数は + 個である.

2

曲線y=f(x)上の点(0,f(0))における接線をlとすると、lの方程式はy= $\boxed{ > } x \boxed{ }$ $\boxed{ }$ x- $\boxed{ }$ である。また、放物線 $y=x^2+px+q$ をCとし、Cは点(a, $\boxed{ > } a \boxed{ }$ $\boxed{ }$

$$p = \boxed{ \ \ \ \ \ \ \ \ \ \ \ } \ \ d = a^{f} - \boxed{ \ \ \ \ \ \ \ \ \ \ }$$

と表される.

数值改变(30点)

問3.において、 関数 $f(x)=1.1x^3-5x^2+3x-4$ 、 また、 曲線y=f(x)上の点(0.1,f(0.1))における接線をlとして問題を解け、 は3.9522となる.