Bandwidth Consecutive Multicolorings of Graphs

M1332 Kazuhide Nishikawa, Nishizeki Lab.
July 30, 2012

Abstract

Let G be a simple graph in which each vertex v has a positive integer weight $b(v)$ and each edge (v, w) has a nonnegative integer weight $b(v, w)$. A bandwidth consecutive multicoloring of G assigns each vertex v a specified number $b(v)$ of consecutive positive integers so that, for each edge (v, w), all integers assigned to vertex v differ from all integers assigned to vertex w by more than $b(v, w)$. The maximum integer assigned to a vertex is called the span of the coloring. In this thesis, we first investigate fundamental properties of such a coloring. We then obtain a pseudo polynomial-time exact algorithm and a fully polynomial-time approximation scheme for the problem of finding such a coloring of a given series-parallel graph with the minimum span. We finally extend the results to the case where a given graph G is a partial k-tree, that is, G has a bounded tree-width.

Summary

An ordinary coloring of a graph G assigns each vertex a color so that, for each edge (v, w), the color assigned to v differs from the color assigned to w [3]. The problem of finding a coloring of a graph G with the minimum number $\chi(G)$ of colors often appears in the scheduling, task-allocation, etc. However, it is NP-hard, and difficult to find a good approximate solution. More precisely, for all $\varepsilon > 0$, approximating $\chi(G)$ within $n^{1-\varepsilon}$ is NP-hard, where n is the number of vertices in G.

The ordinary coloring has been extended in various ways [1, 2, 3, 4, 5]. A multicoloring assigns each vertex a specified number of colors so that, for each edge (v, w), the set of colors assigned to v is disjoint with the set of colors assigned to w [1, 2, 5]. A bandwidth coloring assigns each vertex a positive integer as a color so that the two integers assigned to the ends of each edge (v, w) differ by at least the specified weight $\omega(v, w)$ of (v, w) [4].

In this thesis we deal with another generalized coloring, called a “bandwidth consecutive multicoloring.” Let $G = (V, E)$ be a simple graph with vertex set V and edge set E. Each vertex $v \in V$ has a positive integer weight $b(v)$, while each edge $(v, w) \in E$ has a non-negative integer weight $b(v, w)$. A bandwidth consecutive multicoloring F of G is an assignment of positive integers to vertices such that

(a) each vertex $v \in V$ is assigned a set $F(v)$ of $b(v)$ consecutive positive integers; and

(b) for each edge $(v, w) \in E$, all integers assigned to v differ from all integers assigned to vertex w by more than $b(v, w)$.

We call such a bandwidth consecutive multicoloring F simply a b-coloring of G for a weight function b. The maximum integer assigned to a vertex is called the span of a b-coloring F, and is denoted by $\text{span}(F)$. We define the b-chromatic number $\chi_b(G)$ of a graph G to be the minimum span over all b-colorings F of G. A b-coloring F is called optimal if $\text{span}(F) = \chi_b(G)$. A b-coloring problem is to compute $\chi_b(G)$ for a given graph G.

Figure 1(a) depicts a weighted graph G together with an optimal b-coloring F of G, where a weight $b(e)$ is attached to an edge e, a weight $b(v)$ is written in a circle representing a vertex v, and a set $F(v)$ is attached to a vertex v. Since $\text{span}(F) = 11$, $\chi_b(G) = 11$.

The ordinary vertex-coloring is merely a b-coloring for the case $b(v) = 1$ for every vertex v and $b(v, w) = 0$ for every edge (v, w). The “bandwidth coloring” or “channel assignment” [4] is a b-coloring for the case $b(v) = 1$ for every vertex.
v and $b(v, w) = \omega(v, w) - 1$ for every edge (v, w). It should be noted that our edge weight $b(v, w)$ is one less than the ordinary edge weight $\omega(v, w)$ of a bandwidth coloring.

A b-coloring arises in the assignment of radio channels in cellular communication systems [4] and in the non-preemptive task scheduling. The $b(v)$ consecutive integers assigned to a vertex v correspond to the contiguous bandwidth of a channel v or the consecutive time periods of a task v. The weight $b(v, w)$ assigned to edge (v, w) represents the requirement that the frequency band or time period of v must differ from that of w by more than $b(v, w)$. The span of a b-coloring corresponds to the minimum total bandwidth or the minimum makespan.

One can find a multicoloring of a graph G with the minimum number of colors in time polynomial in the output size if G is a series-parallel graph or a partial k-tree, that is, a graph of bounded treewidth [2, 5]. The problem of finding a bandwidth coloring with the minimum number of colors is NP-hard even for partial 3-trees [4], and there is a fully polynomial-time approximation scheme (FPTAS) for the problem on partial k-trees [4]. Since our b-coloring problem is also NP-hard for partial 3-trees, it is desirable to obtain a good approximation algorithm. However, there are only heuristics for the b-coloring problem so far.

In this thesis, we first investigate fundamental properties of a b-coloring. In particular, we characterize the b-chromatic number $\chi_b(G)$ of a graph G in terms of the longest path in acyclic orientations of G. We then obtain a pseudo polynomial-time exact algorithm for the b-coloring problem on series-parallel graphs, which often appear in the task scheduling and electrical circuits. The algorithm takes time $O(B^3n)$, where B is the maximum weight of G: $B = \max_{x \in V \cup E} b(x)$. Using the algorithm, we then give a fully polynomial-time approximation scheme (FPTAS) for the problem. We finally extend these results to the case where G is a partial k-tree.

References

Publication