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This paper discusses embedding in a two-dimensional plane a
symbolic representation for spatial data using the simple objects,
points(P ), lines(L), circuits(C) and areas(A). We have proposed
PLCA as a new framework for a qualitative spatial reasoning. In a PLCA
expression, the entire figure is represented in a form in which all the objects
are related. We investigate the conditions for two-dimensional realizability
of a PLCA expression, and derive the relation that the numbers of objects
in a PLCA expression should have. In this process, we use the well-known
Euler’s formula. We also give an algorithm for drawing the figure of the
PLCA expression that satisfies this condition in a two-dimensional plane
and prove its correctness. The algorithm generates a quantitative expression
from qualitative expression.
Keywords: qualitative spatial reasoning, planar graph, graph theory, spatial
database

1 Introduction

Compared to textual data, spatial data contains more abundant information and
provides a representation that is easy for various users to understand, but these
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data require significant memory and space. However, highly-detailed data are not
always neccessary depending on the user’s purpose. It is sometimes sufficient
to know the number of objects or the positional relationships of the objects in a
figure. Qualitative Spatial Reasoning (QSR) is a method that treats spatial data
symbolically, not numerically, by extracting only the information necessary for a
user’s purpose. It is useful for the recognition and analysis of physical phenomena,
explanation of a causality, diagnosis, and so on (Cohn & Hazarika, 2001).

In QSR, a space is usually represented as a set of relative positional relation-
ships between objects such as regions or lines. So far, various QSR systems have
been proposed (Borgo, Guarino, & Masolo, 1996)(Cohn & Varzi, 1998)(Egen-
hofer & Franzosa, 1995)(Randell, Cui, & Cohn, 1992)(Renz, 2002)(Stock(ed.),
1997). In most systems, the spatial relationships of objects are represented using
predicates, and axioms on these predicates are introduced. For example, consider
several relationships between regions α and β as shown in Figure 1. In most sys-
tems, these relationships are represented by the binary relation of α and β. This
means that many predicates and axioms are required to distinguish these figures,
making the system not feasible and hard to implement. On the other hand, the
system is inapplicable to real problems if the classification is too coarse, such as
if we regard, (a),(b) and (c) as the same relation of “connected.”

We have proposed PLCA to solve these problems (Sumitomo & Takahashi,
2004)(Takahashi & Sumitomo, 2005). PLCA provides a symbolic representation
for spatial data using the simple objects: points(P ), lines(L), circuits(C) and
areas(A). No pair of areas has a part in common1. The entire space is covered
with the areas. The four kinds of the objects are used to represent “a region.” The
figures in Figure 1 are distinguished not by the relationships between regions but
by the objects that are used to represent these regions. If two regions are con-
nected, then they have the same points and/or lines in common, and these points
and/or lines are different depending on the connection patterns. Therefore, we
can distinguish the connection patterns by checking the common elements with-
out introducing more predicates nor axioms. Symbolic representation allows rapid
processing and enables the compaction of information to a level that is suitable for
the user’s purpose.

For a given figure in a two-dimensional plane, there exists a PLCA expression,
that is unique in its pattern of connections among regions. Generating a PLCA
expression from a figure transforms a quantitative representation into a qualitative
one. We have implemented a prototype system (Takahashi & Sumitomo, 2007).

However, it is difficult to generate a figure from a PLCA expression, since
we have to supplement the missing part of the data. A representation for spatial
data using objects related to each other is frequently used in computational geom-
etry (de Berg, van Kreveld, & Overmars, de BergETALqsr:BKOS97) and Geo-

1We use the term area instead of region, since area used in this paper is a different entity from
the region generally used in qualitative spatial reasoning.
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Figure 1.: Relationships between regions

graphic Information Systems (Thurston, Poiker, & Moore, 2003). Different from
these representations which have a one-to-one relation with a figure, a quantitative
representation has to be generated from a qualitative one in PLCA. Moreover, it
has not been clarified whether a figure can be drawn in a two-dimensional plane
for any PLCA expression.

In this paper, we investigate the conditions for the two-dimensional realizabil-
ity of a PLCA expression and show that we can determine the two-dimensional
realizability by examining the number of the objects contained in the expression.
We prove this condition using Euler’s formula. We also give an algorithm for
drawing the figure in a two-dimensional plane for a PLCA expression that satis-
fies this condition. Well-known concepts and existing algorithms in graph theory
are used to construct the algorithms and proofs.

This paper is organized as follows. In section 2, we describe the PLCA expres-
sion. In section 3, we discuss two-dimensional realizability of a PLCA expression.
In section 4, we show the algorithm for drawing the figure in a two-dimensional
plane corresponding to a PLCA expression. In section 5, we compare drawing
for PLCA with those for other QSR systems. Finally, in section 6, we show the
conclusion.

2 PLCA Expressions

2.1 Definition of Classes

PLCA has four basic components: points(P ), lines(L), circuits(C) and areas(A).
Point is defined as a primitive class.
Line is defined as a class that satisfies the following condition: for an arbitrary

instance l of Line, l.points is a pair [p1, p2] where p1, p2 ∈ Point. A line has
an inherent orientation. When l = [p1, p2], l+ and l− mean [p1, p2] and [p2, p1],
respectively. l∗ denotes either l+ or l−. Intuitively, a line is the edge connecting
two (not always different) points. No two lines are allowed to cross.

Circuit is defined as a class that satisfies the following condition: for an arbi-
trary instance c of Circuit, c.lines is a sequence [l∗0, . . . , l

∗

n] where l0, . . . , ln ∈
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Line(n ≥ 0), li.points = [pi, pi+1](0 ≤ i ≤ n) and pn+1 = p0. [l∗0, . . . , l
∗

n] and
[l∗j , . . . , l∗n, l∗0, . . . , l

∗

j−1] denote the same circuit for any j (0 ≤ j ≤ n).

For c1, c2 ∈ Circuit, we introduce two new predicates lc and pc to denote that
two circuits share line(s) and point(s), respectively. lc(c1, c2) is true iff there
exists l ∈ Line such that (l+ ∈ c1.lines) ∧ (l− ∈ c2.lines). pc(c1, c2) is
true iff there exists p ∈ Point such that (p ∈ l1.points) ∧ (p ∈ l2.points)∧
(l∗1 ∈ c1.lines) ∧ (l∗2 ∈ c2.lines). For example, for the circuits c1 and c2 in
Figure 2, lc(c1, c2) holds in (a) while pc(c1, c2) holds in (b). A circuit is the
boundary between an area and its adjacent areas viewed from the side of that area.
We say that p is on c if there exists l such that p ∈ l.points ∧ l∗ ∈ c.lines.

Area is defined as a class that satisfies the following condition: for an arbi-
trary instance a of Area, a.circuits is a set {c0, . . . , cn} where c0, . . . , cn ∈
Circuit(n ≥ 0), and ∀ci, cj ∈ a.circuits; (i 6= j) → (¬pc(ci, cj) ∧¬lc(ci, cj)).
Intuitively, an area is a connected region which consists of exactly one piece
that may have a hole. No two areas are allowed to cross. The final condi-
tion means that any pair of circuits that belong to the same area cannot share a
point or a line. For example, in Figure 3, the hatched area a has three circuits:
a.circuits = {c0, c1, c2}, all of which are ¬pc and ¬lc with each other.

The PLCA expression e is defined as a five tuple e = 〈P,L,C,A, outermost〉
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where P,L,C and A are a set of points, lines, circuits and areas, respectively, and
outermost ∈ C. An element of P ∪ L ∪ C ∪ A is called a component of e.

We assume that there exists a circuit in the outermost side of the figure that is
called outermost. It means that the target figure is drawn in a finite space, and
the space can be divided into a number of areas which do not overlap with each
other.

In Figure 4, (a) shows an example of a target figure, (b) and (c) show the names
of objects. In Figure 5, we show a PLCA expression corresponding to Figure 4.

Example 1.

e.points = {p0, p1, p2, p3, p4} couter.lines = [l+0 ]
e.lines = {l0, l1, l2, l3, l4, l5, l6, l7, l8} c0.lines = [l−0 ]
e.circuits = {couter, c0, c1, c2, c3, c4, c5, c6} c1.lines = [l−1 , l−5 ]
e.areas = {a0, a1, a2, a3, a4, a5} c2.lines = [l−2 , l−6 ]
e.outermost = couter c3.lines = [l+4 , l+3 , l+2 , l+1 ]
l0.points = [p0, p0] c4.lines = [l−4 , l−8 ]
l1.points = [p1, p3] c5.lines = [l−3 , l−7 ]
l2.points = [p2, p1] c6.lines = [l+5 , l+8 , l+7 , l+6 ]
l3.points = [p4, p2] a0.circuits = {c6, c0}
l4.points = [p3, p4] a1.circuits = {c1}
l5.points = [p3, p1] a2.circuits = {c2}
l6.points = [p1, p2] a3.circuits = {c3}
l7.points = [p2, p4] a4.circuits = {c4}
l8.points = [p4, p3] a5.circuits = {c5}

Figure 5.: PLCA expression for Figure 4
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Definition 2.1 (consistency) For PLCA expression e = 〈P,L,C,A, outermost〉,
if the following three constraints are satisfied, then it is said to be consistent.

1. constraint on P-L: For any p ∈ Point there exists at least one line l such that
p ∈ l.points.

2. constraint on L-C: For any l ∈ Line, there exist exactly two distinct circuits
c1, c2 such that l+ ∈ c1.lines, l− ∈ c2.lines.

3. constraint on C-A: For any c ∈ Circuit other than outermost, there exists
exactly one area a such that c ∈ a.circuits. The outermost is not included
in any area.

Due to these constraints, neither isolated lines nor points are allowed.

2.2 PLCA Equivalence

For consistent PLCA expressions e1 = 〈P1, L1, C1, A1, outermost1〉 and
e2 = 〈P2, L2, C2, A2, outermost2〉, if there exists a bijective mapping f from
e1 to e2, that satisfies the following conditions, then e1 and e2 are said to be
PLCA-equivalent.

For ∀p ∈ P1, f(p) ∈ P2

For ∀l ∈ L1, f(l) ∈ L2

For ∀c ∈ C1, f(c) ∈ C2

For ∀a ∈ A1, f(a) ∈ A2

For ∀l ∈ L1, f(l.points) = f(l).points

For ∀c ∈ C1, f(c.lines) = f(c).lines

For ∀a ∈ A1, f(a.circuits) = f(a).circuits

2.3 Operations on Lines

Definition 2.2 (redundant expression, minimum expression)
Let e = 〈P,L,C,A, outermost〉 be a consistent PLCA expression. For a point
p ∈ P , if the number of lines such that p ∈ l.points is two, then p is said to be
a redundant point. If e contains a redundant point, it is said to be a redundant
expression; otherwise, it is said to be the minimum expression.

Several operations are defined on a PLCA expression, including line division
and line combination (Figure 6).

Line division divides the designated line. It is defined as follows:

1. Select a line l.points = [p1, p2] to be divided.

2. Assume that c1.lines = {l∗0, . . . , l
∗

i−1, l
+, l∗i , . . . , l∗n} and

c2.lines = {m∗

0, . . . ,m
∗

j−1, l
−,m∗

j , . . . ,m
∗

k}.
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3. Set l′1.points = [p1, p] and l′2.points = [p, p2].

4. Set L = L − {l} ∪ {l′1, l
′

2} and set P = P ∪ {p}.

5. Replace c1.lines and c2.lines by {l∗0, . . . , l
∗

i−1, l
′+
1 , l′+2 ,

l∗i , . . . , l∗n} and {m∗

0, . . . ,m
∗

j−1, l
′−

2 , l′−1 m∗

j , . . . ,m
∗

k}, respectively.

Line combination combines two adjacent lines that share a redundant point.
The operation is the opposite of line division.

1. Select two lines {l′1, l
′

2} where l′1.points = [p1, p] and l′2.points = [p, p2].

2. Assume that c1.lines = {l∗0, . . . , l
∗

i−1, l
′+
1 , l′+2 , l∗i , . . . , l∗n} and

c2.lines = {m∗

0, . . . ,m
∗

j−1, l
′−

2 , l′−1 ,m∗

j , . . . ,m
∗

k}.

3. Set l.points = [p1, p2].

4. Set L = L − {l′1, l
′

2} ∪ {l} and set P = P − {p}.

5. Replace c1.lines and c2.lines by {l∗0, . . . , l
∗

i−1, l
+, l∗i , . . . , l∗n} and

{m∗

0, . . . ,m
∗

j−1, l
−,m∗

j , . . . ,m
∗

k}, respectively.

A minimal expression can be converted to the redundant expression by line
division, and the redundant expression can be converted to a minimum one by line
combination.

3 Two-Dimensional Realizability

We investigate a condition in which a PLCA expression can be realized in a two-
dimensional plane.

3.1 Concepts from Graph Theory

As a preparation, we introduce several concepts from graph theory.
A (non-directed) graph is defined to be G = (V,E), where V is a set of vertices

and E is a set of edges. An edge of E is defined as a pair of vertices of V . For
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graphs G = (V,E) and G′ = (V ′, E′), if V ′ ⊂ V and E′ ⊂ E, G′ is said to be a
subgraph of G; if V ∩V ′ = φ and E∩E′ = φ, it is said that G and G′ are disjoint.
Here, when we consider more than one subgraph of G, we assume that they are
disjoint. If there is no edge (v, v), and for any pair of different vertices, if there
exists a unique edge that connects them, the graph is said to be simple. A graph
that can be embedded in a plane so that no edges intersect is said to be a planar
graph. If it is possible to move between any pair of vertices by moving along the
edges of the graph, the graph is said to be connected; otherwise, it is said to be
disconnected. A connected planar graph divides a plane into a number of regions,
which are called faces. Note that faces include the outer infinitely large region. A
sequence (v0, . . . , vn) where (vi, vi+1) for each i (0 ≤ i ≤ n − 1) is an edge is
said to be a path, and if v0 = vn, it is said to be a cycle. A cycle that is a border
from the graph and the outer infinitely large region is said to be an outer boundary
cycle.

For a connected planar graph, the following theorem holds (Chartland & Les-
niak, 1996).

Theorem 3.1 (Euler’s formula) Let G be a connected planar graph. Let VG, EG, FG

be the numbers of the vertices, edges and faces of G. The following relation holds:

VG − EG + FG = 2

3.2 Mapping to Graph Expression

Let e = 〈P,L,C,A, outermost〉 be a consistent PLCA expression. We can define
a non-directed graph m(e) = (V,E) by relating P and L to V and E, respectively.

For p ∈ P , m(p) denotes the corresponding vertex, and for l ∈ L, m(l) denotes
the corresponding edge. We extend m so that c is mapped to m(c). For each
li(i = 0, . . . , n) such that l∗i ∈ c.lines, if m(li) is contained in a graph G, then
we say that m(c) is contained in G.

3.3 PLCA Connectedness

We introduce the connectedness of the components of a PLCA expression.

Definition 3.1 (d-pcon) Let e = 〈P,L,C,A, outermost〉 be a PLCA expression.
For a pair of components of e, the predicate d-pcon is defined as follows.

1. d-pcon(p, l) iff p ∈ l.points.

2. d-pcon(l, c) iff l∗ ∈ c.lines.

3. d-pcon(c, a) iff c ∈ a.circuits.
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Definition 3.2 (PLCA trail) A sequence (α0 . . . , αn) where d-pcon(αi αi+1) or
d-pcon(αi+1, αi) holds for each i (0 ≤ i ≤ n − 1), and αi 6= αj for each i, j

(0 ≤ i < j ≤ n), is said to be a PLCA trail from α0 to αn.

Definition 3.3 (pcon) Let α, β and γ be components of a PLCA expression. The
predicate pcon is defined as a relation that satisfies the following properties.

1. If d-pcon(α, β), then pcon(α, β).

2. If pcon(α, β), then pcon(β, α).

3. If pcon(α, β) and pcon(β, γ), then pcon(α, γ).

Definition 3.4 (PLCA connected) A PLCA expression e is said to be PLCA con-
nected iff pcon(α, β) holds for any pair of components α and β of e.

Intuitively, PLCA connectedness guarantees that all the components including
the outermost are connected. That is, for any pair of components, there is a trail
that can go from one component to the other by tracing components.

Let e = 〈P,L,C,A, outermost〉 be a consistent connected PLCA expression.
For any pair of points p1, p2 ∈ P (p1 6= p2), let (α0 . . . , αn) be a trail from p1

to p2. If α1, . . . , αn−1 are not points, then this trail is one of the following three
types (Figure 7).
[Trail Types between Points]

[TType1] (p1, l, p2)
[TType2] (p1, l0, c, l1, c, l2, . . . , lk, p2)
[TType3] (p1, l1, c0, a, c1, a, c2, . . . , ck, l2, p2)

where l, l0, . . . , lk are lines, li 6= lj for each i, j (0 ≤ i < j ≤ k), c, c0, . . . , ck are
circuits, ci 6= cj for each i, j (0 ≤ i < j ≤ k), and a is an area.

Note that an area and a circuit do not appear in [TType1], and an area does not
appear in [TType2]. If there exists a pair of points p1 and p2 such that the trail
from p1 to p2 is [TType3], m(e) is disconnected.
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3.4 Planar PLCA Expression

Lemma 3.1 Let e = 〈P,L,C,A, outermost〉 be a consistent connected PLCA
expression that satisfies |a.circuits| = 1 for any area a ∈ A, then m(e) is a
connected graph.

Proof)
For any pair of circuits c1 and c2 (c1 6= c2), there is no area a that satisfies

c1, c2 ∈ a.circuits, since |a.circuits| = 1. That is, there is no area a that satisfies
d-pcon(c1, a) ∧ d-pcon(c2, a). Therefore, for any pair of p1 and p2 (p1 6= p2),
trail type from p1 to p2 is either [TType1] or [TType2]. m(e) is a connected graph
in both cases.

Theorem 3.2 For a consistent connected PLCA expression
e = 〈P,L,C,A, outermost〉, e can be realized in a two-dimensional plane iff
|P | − |L| − |C| + 2|A| = 0 holds.

Proof)
For a consistent connected PLCA expression e, if there exists an area a that

satisfies |a.circuits| ≥ 2, then we transform e by making lines between circuits
so that any area contains only one circuit.

For an area a that satisfies a.circuits = {c1, c2}, let p1 and p2 be arbitrary
points on c1 and c2, respectively. That is, for c1.lines = {l∗0, . . . , l

∗

n}, there exists
i (0 ≤ i ≤ n) such that (p1 ∈ li−1.points)∧ (p1 ∈ li.points), and for c2.lines =
{m∗

0, . . . ,m
∗

k}, there exists j (0 ≤ j ≤ k) such that (p2 ∈ mj−1.points) ∧ (p2 ∈
mj .points).

Delete c1, c2, a and add l′1, l
′

2, c
′

1, c
′

2, a
′

1, a
′

2 that satisfy the followings (Fig-
ure 8):

l′1.points = [p1, p2]
l′2.points = [p2, p1]
c′1.lines = {l∗0, . . . , l

∗

i−1, l
′+
1 ,m∗

j , . . . ,m
∗

k, m∗

0, . . . ,m
∗

j−1, l
′+
2 , l∗i , . . . , l∗n}

c′2.lines = {l′−1 , l′−2 }
a′

1.circuits = {c′1}
a′

2.circuits = {c′2}

This operation is performed by an operation of area division by creating two
lines between two existing points. The consistency is preserved by this opera-
tion (Takahashi & Sumitomo, 2007). The number of lines is increased by 2, the
number of areas is increased by 1, and that of the others is not changed in this
operation.
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For an area such that |a.circuits| = K ≥ 2, we repeat the operation K − 1
times. If we repeat this operation for each area a ∈ A such that |a.circuits| ≥ 2,
then we can obtain a consistent connected PLCA expression
e′ = 〈P ′, L′, C ′, A′, outermost′〉 that satisfies |a′.circuits| = 1 for any a′ ∈ A′.
Let N be the total repeated times of the operation. Then, |P ′| = |P |, |L′| =
|L| + 2N, |C ′| = |C| and |A′| = |A| + N .

m(e′) is a connected graph by Lemma 3.1. Therefore, |P ′| − |L′| + |A′| = 1
holds by Theorem 3.1, since |A′| corresponds to the number of faces that does not
include the outer infinitely large region. Therefore, |P |−|L|+ |A| = N +1 holds.

N is equivalent to Σa∈A(|a.circuits| − 1) − 1, since each circuit but for the
outermost is contained in only one area. Therefore, N = |C| − |A| − 1. Hence,
|P | − |L| − |C| + 2|A| = 0 holds.

On the other hand, if |P | − |L| − |C| + 2|A| = 0 holds, e can be realized in a
two-dimensional plane. It can easily be proved by induction on the structure of an
expression.

Hereafter, for a PLCA expression e = 〈P,L,C,A, outermost〉, we denote the
value of |P | − |L| − |C| + 2|A| by ε(e).

Definition 3.5 (planar PLCA expression) A consistent connected PLCA expres-
sion e that satisfies ε(e) = 0 is said to be planar.

The PLCA expression in Example 2 is consistent and PLCA connected, but not
realizable in a two-dimensional plane (Figure 9). In this case, ε(e) = −2.
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Figure 9.: PLCA expression unrealizable in a two-dimensional plane

Example 2.
e.points = {p0, p1, p2}
e.lines = {l0, l1, l2}
e.circuits = {couter, c0, c1, c2, c3, c4}
e.areas = {a0, a1}
l0.points = [p0, p0]
l1.points = [p1, p1]
l2.points = [p2, p2]
couter.lines = [l+0 ]
c0.lines = [l−0 ]
c1.lines = [l+1 ]
c2.lines = [l+2 ]
c3.lines = [l−1 ]
c4.lines = [l−2 ]
a0.circuits = {c0, c3, c4}
a1.circuits = {c1, c2}

A consistent PLCA expression e that satisfies ε(e) = 0 is not always PLCA
connected. The PLCA expression in Example 3 is consistent and ε(e) = 0,
but not PLCA connected. It can be divided into a plane part which consists
of p0, l0, couter, c0, a0 and a floating part which consists of the other compo-
nents. A component of the former is not pcon with that of the latter. (For ex-
ample, pcon(couter, c1) does not hold.) This expression is not realizable in a
two-dimensional plane.



EMBEDDING QUALITATIVE REPRESENTATION IN A PLANE 13

Example 3.
e.points = {p0, p1}
e.lines = {l0, l1, l2}
e.circuits = {couter, c0, c1, c2, c3}
e.areas = {a0, a1, a2}
l0.points = [p0, p0]
l1.points = [p1, p1]
l2.points = [p1, p1]
couter.lines = {l+0 }
c0.lines = {l−0 }
c1.lines = {l+1 , l+2 }
c2.lines = {l−2 }
c3.lines = {l−1 }
a0.circuits = {c0}
a1.circuits = {c1}
a2.circuits = {c2, c3}

3.5 Orientation of a Circuit

Each circuit of a planar PLCA expression e has an orientation of inner or outer.
If m(e) is a non-connected graph, then it can be decomposed into subgraphs.

We determine the orientation of each circuit using the diagram called “DCO
diagram.” In this diagram, the nodes correspond to subgraphs, areas and circuits
of e, and edges represent their relationships.

[Algorithm: DCO(determine circuit’s orientation)]
Let e be a consistent connected PLCA expression.

1. Set c = outermost.

2. Make a node Nc.

3. Set the orientation of c to be outer.

4. For a subgraph g such that m(c) ∈ g, make a node Ng and draw an edge
from Nc to Ng .

5. For each m(c′) ∈ g such that c′ 6= c, do the following:

(a) Set the orientation of c′ to be inner.

(b) Make a node Nc′ and draw an edge from Ng to Nc′ .

(c) For an area a such that c′ ∈ a.circuits, make a node Na and draw an
edge from Nc′ to Na.
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inner circuit

outer circuit

couter g0 c0 a0 c6

g1

c1

c2

c3

c4

c5

a1

a2

a3

a4

a5

Figure 10.: DCO diagram for Example 1

inner circuit

outer circuit

couter g0 c0

a0 c3 g1 c1

c2c4 g2

a1

a1

c2

c1

.....

.....

Figure 11.: DCO diagram for Example 2

(d) If there is no circuit c′′ ∈ a.circuits such that c′′ 6= c′, then terminate.
Otherwise, for each c′′, do the following:

i. Make a node Nc′′ and draw an edge from Na to Nc′′ .
ii. Set c = c′′.

iii. Go to 3.

A diagram constructed in this way is called a DCO diagram. Each path in the
diagram is a sequence of a pattern Nc1

→ Ng → Nc2
→ Na where c1, c2 are

circuits, a is an area of e, and g is a subgraph of m(e). Figure 10 and Figure 11
show DCO diagrams for Example 1 and Example 2, respectively.

Lemma 3.2 For a planar PLCA expression e, (i) the orientation of each circuit is
decidable, (ii) there exists the unique inner circuit in a.circuit for each area a,
and (iii) there exists an outer circuit c such that m(c) ∈ g is an outer boundary
cycle of g for each subgraph g.

Proof)
Assume that the DCO algorithm does not terminate. There exists c1, c2 (c1 6=

c2) and a such that both patterns Nc1
→ Na → Nc2

and Nc2
→ Na → Nc1

ap-
pear in the DCO diagram. It follows that there are trails (outermost, . . . , c1, a, c2)
and (outermost, . . . , c2, a, c1), since e is a planar PLCA expression. This means
that c1 is closer to the outermost than a and also that a is closer to the outermost
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m(c1)

m(c2)

m(c3)

m(c0)

(a) (b)

g1
g2

g3

inner circuit

outer circuit

c0 a
c1

c2

c3

g1

g2

g3

Figure 12.: Realization of a DCO diagram

than c1, which is a contradiction. Therefore, the DCO algorithm terminates. Thus,
each a, c of e and g of m(e) appears at most once in the DCO diagram. On the
other hand, each appears at least once from the planarity of the PLCA expres-
sion. Therefore, they appear exactly once in the DCO diagram. For each pattern
Nc1

→ Ng → Nc2
→ Na, c1 and c2 are determined as outer and inner, re-

spectively. Therefore, the orientation of each circuit is decidable. There exists the
unique inner circuit in a.circuit for each area a, since there exists only one Na

such that Nc2
→ Na. m(c1) in g is an outer boundary cycle of g, since there

exists only one Ng such that Nc1
→ Ng .

The realization of a part of the DCO diagram shown in Figure 12(a) is shown
in Figure 12(b). That is, we can draw subgraphs g1, . . . , gn whose outer boundary
cycles are m(c1), . . . ,m(cn), respectively, in the area surrounded by m(c0) so
that they do not have a common part.

4 Drawing Algorithm

We describe the algorithm for drawing a figure for a planar PLCA expression in a
two-dimensional plane.

4.1 Outline of the Algorithm

First, make a redundant PLCA expression of a given planar PLCA expression
using the line division operation, so that the corresponding graph expression of
the result is a simple graph.

Second, decompose the graph into connected subgraphs and determine the co-
ordinates for each connected subgraph.

Next, determine the position to be embedded for each connected subgraph by
changing the size and/or the position.
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Then, substitute a curve for the pair of edges which are connected to the point
added in the first step.

The final step, which avoids redundancy, can be omitted.

4.2 Details of the Algorithm

[Algorithm: DF(drawing a figure)]
Let e = 〈P,L,C,A, outermost〉 be a planar PLCA expression.

[STEP1]
[STEP1.1] Elimination of edges that circulate the node itself.

1. Set Lines = L,NewL = {}.

2. If Lines = {}, terminate. Otherwise, extract an arbitrary l ∈ Lines and
set Lines = Lines − {l}.

3. If l.points = [p, p], then divide l to create new lines l1, l2 and set NewL =
NewL ∪ {l1, l2}. At the same time, update the other components of e

according to the line division operation. Otherwise, set NewL = NewL ∪
{l}.

4. Go to 2.

[STEP1.2] Elimination of multiple edges that connect the same pair of nodes,
so that only one edge remains.

1. Set L′ = {}.

2. If NewL = {}, terminate. Otherwise, extract an arbitrary l ∈ NewL and
set NewL = NewL − {l}.

3. If l.points = [p1, p2] where p1 6= p2 and there exists l′ ∈ NewL such that
l′ = [p1, p2] or l′ = [p2, p1], do the following:

(a) Set P = P ∪ {p′}.

(b) Set L′ = L′ ∪ {l1, l2} where l1, l2 are new lines.

(c) Set l1.points = [p1, p
′], l2.points = [p′, p2].

Otherwise, set L′ = L′ ∪ {l}.

4. Go to 2.
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As the result, e′ = 〈P ′, L′, C,A, outermost〉 is obtained where P ′ is the up-
dated set of P by the line division operation.
[STEP2]

We utilize the existing graph algorithms (e.g.(Ochiai, 2004)) in this step.
Let m(e′) be the graph corresponding to the PLCA expression obtained in

STEP1.

1. Decompose m(e′) into the connected subgraphs that have no common ele-
ments.

2. For each circuit, determine the orientation using the DCO algorithm pro-
vided in the previous section.

3. For each connected subgraph, determine the coordinates that are used to
draw a planar graph embedded in the unit circle of the center (0, 0) by a
straight line.

[STEP3]
We utilize the existing polygon triangulation algorithm (e.g.(Ima, 2001)) in this

step.
For each a ∈ A where a.circuits contains more than one circuit, do the fol-

lowing:

1. Let a.circuits = {c0, c1, . . . , cn}, where the orientation of c0 is inner and
those of c1, . . . , cn are outer.

2. Decompose the polygon which has an edge m(c0) into triangles t1, . . . , th,
where the size of tu is larger than or equal to tu+1 (u = 1, . . . , h − 1).

3. Let g1, . . . , gn be the subgraphs whose outer boundary cycle are
m(c1), . . . ,m(cn), respectively.

(a) Set k = h.

(b) While k < n do the following:

i. Decompose t1 into two triangles t11 and t12.

ii. Sort t11, t12, t2, . . . , tk to make a new sequence t′1, . . . , t
′

k+1
in

the descending order of power.

iii. Set k = k + 1.

(c) For each i (i = 1, . . . , n), embed gi in ti.

[STEP4]
Substitute a curve for the pair of edges and delete the node shared by the pair

which corresponds to the points and lines added in STEP1.
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4.3 Correctness of the Algorithm

Theorem 4.1 For a planar PLCA expression, a figure can be drawn in a two-
dimensional plane by the algorithm DF.

Proof)
The line division operation does not affect two-dimensional realizability, since

consistency and connectedness are preserved, and the differences in the numbers
of points and lines before and after the operation are equivalent. Thus, m(e′)
which is obtained in STEP1 is a simple planar graph, and the decomposed sub-
graphs are also simple planar graphs.

A simple planar graph can be drawn in a two-dimensional plane using only
straight lines (Chartland & Lesniak, 1996).

From Lemma 3.2, for a planar PLCA expression, the orientation of each cir-
cuit can be determined either as inner or outer. This lemma also ensures that
we can determine the outer boundary cycle for each subgraph and the positional
relationships between subgraphs.

In STEP3, for an a such that a.cycles = {c0, c1, . . . , cn}, the polygon which
has an edge m(c0) is decomposed into more than n−1 triangles and each subgraph
is drawn in each triangle. Therefore, these subgraphs are embedded in the inner
part of the polygon in such a manner that each pair does not intersect. Therefore,
a is realized in this process.

Let m(p) be a point to be deleted in STEP4. We can assume that there are
exactly two lines l1.points = [p1, p] and l2.points = [p, p2], since p is shared
only by the lines added in STEP1. Edges m(l1) and m(l2) can be replaced by an
approximating curve which connects nodes m(p1) and m(p2) without changing
the connection patterns of areas.

Hence, a figure corresponding to a given PLCA expression can be drawn in a
two-dimensional plane.

4.4 Prototype System

We have implemented a prototype system using JAVA. The system checks whether
a given PLCA expression is planar, and if it is, the corresponding figure is drawn
in a two-dimensional plane (Figure 13) 2.

5 Comparison with other QSR Systems

RCC (Randell et al., 1992) and 9-intersection model (Egenhofer & Franzosa,
1995) are representative frameworks for qualitative spatial reasoning.

2In the prototype system, STEP4 has not yet been implemented.
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Figure 13.: A figure generated by the prototype system

Existence of a topological space and planarity for a set of RCC relationships
are discussed in (Grigni, Papadias, & Papadimitriou, 1995; Renz, 2002; Wolter &
Zakharyaschev, 2000). However, an algorithm for drawing has not been given yet.

Figure 14.: Fundamental relationships of RCC

Figure 14 shows the fundamental eight relationships of RCC. Consider a set of
RCC relationships S = {R1, . . . , Rn} which is realizable in a two-dimensional
plane. If each Ri(i = 1, . . . , n) is either NTPP, NTPPi, DC or EQ, then S is
transformed uniquely into PLCA. In this case, the figure corresponding to S can
be drawn using PLCA drawing algorithm. Otherwise, there exists multiple PLCA
expressions. We can draw one of them, but it is an open problem whether we can
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determine which one can be drawn. As for 9-intersection model, in which posi-
tional relationships between regions are represented in the form of 3∗ 3 matrix,
the similar discussion is available.

A significant difference between PLCA and the other QSR systems is the repre-
sentation of the relations of the objects. In the other QSR systems, the entire figure
is represented in the form of a set of binary relations, while we do not use binary
relations. Moreover, objects in the other QSR systems may share their parts with
each other which is prohibited in PLCA. PLCA adopts more refined classification
on equivalent figures than the other QSR systems. It may be possible to determine
the one-to-one mapping from the extension of RCC, which has an information
of connection patterns of regions (Cohn & Varzi, 1998), and the extension of 9-
intersection model (Egenhofer & Franzosa, 1995; Nedas & Egenhofer, 2004) to
PLCA.

6 Concluding Remarks

We have investigated the condition for embedding a PLCA expression in a two-
dimensional plane, and shown that we have only to check the numbers of the
components. We have proved this condition by utilizing the well-known Euler’s
formula. We have also provided an algorithm for drawing the figure in a two-
dimensional plane for a planar PLCA expression, and proved its correctness. This
algorithm generates a quantitative expression from a qualitative expression.

The algorithm utilizes the existing graph decomposition algorithm, graph draw-
ing algorithm, and polygon triangulation algorithm. This suggests that the theo-
rems and the algorithms in graph theory and computational geometry can be useful
in studying PLCA.

In the future, we will investigate further the relationship between PLCA and
other theories such as graph theory, computational geometry and topology. We
will also consider the extension of PLCA to three-dimensional space.

We are now improving the algorithm so that objects are placed at the most visi-
ble position and the computational complexity is reduced. For a PLCA expression,
we can draw an infinite number of figures. We should select the appropriate one to
show depending on the user’s purpose and the environment such as a display size.
It is also an interesting issue to determine the standard for the most “appropriate”
figure representation.
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Appendix Example of DF Algorithm

Let e be a planar PLCA expression.

e = 〈P,L,C,A, outermost〉
e.points = {p0, p1, p2}
e.lines = {l0, l1, l2, l3}
e.circuits = {couter, c0, c1, c2, c3, c4, c5}
e.areas = {a0, a1, a2, a3}
e.outermost = couter

l0.points = [p0, p0]
l1.points = [p1, p1]
l2.points = [p1, p1]
l3.points = [p2, p2]
couter.lines = {l+0 }
c0.lines = {l−0 }
c1.lines = {l−1 }
c2.lines = {l+3 }
c3.lines = {l−3 }
c4.lines = {l−2 }
c5.lines = {l+1 , l+2 }
a0.circuits = {c0, c5}
a1.circuits = {c1, c2}
a2.circuits = {c4}
a3.circuits = {c3}



EMBEDDING QUALITATIVE REPRESENTATION IN A PLANE 23

[STEP1] Make a simple graph.
e is converted to the following e′ so that m(e′) is a simple graph.

e′ = 〈P ′, L′, C,A, outermost〉
e′.points = {p0, p1, p2, p00, p01, p10, p11, p12, p13, p20, p21}
e′.lines = {l00, l000, l001, l10, l100, l101, l20, l200, l201, l30, l300, l301}
e′.circuits = {couter, c0, c1, c2, c3, c4, c5}
e′.areas = {a0, a1, a2, a3}
e′.outermost = couter

l000.points = [p0, p00]
l001.points = [p00, p01]
l00.points = [p01, p0]
l100.points = [p1, p10]
l101.points = [p10, p11]
l10.points = [p11, p1]
l200.points = [p1, p12]
l201.points = [p12, p13]
l20.points = [p13, p1]
l300.points = [p2, p20]
l301.points = [p20, p21]
l30.points = [p21, p2]
couter.lines = {l+000, l

+
001, l

+
00}

c0.lines = {l−00, l
−

001, l
−

000}
c1.lines = {l−10, l

−

101, l
−

100}
c2.lines = {l+300, l

+
301, l

+
30}

c3.lines = {l−30, l
−

301, l
−

300}
c4.lines = {l−20, l

−

201, l
−

200}
c5.lines = {l+100, l

+
101, l

+
10, l

+
200, l

+
201, l

+
20}

a0.circuits = {c0, c5}
a1.circuits = {c1, c2}
a2.circuits = {c4}
a3.circuits = {c3}

[STEP2]
Decompose m(e′) into connected subgraphs g0, g1 and g2.
g0: {p0, p00, p01} {l000, l001, l00} {couter, c0}
g1: {p1, p10, p11, p12, p13} {l100, l101, l10, l200, l201, l20} {c1, c4, c5}
g2: {p2, p20, p21} {l300, l301, l30} {c2, c3}
Determine the coordinates for each subgraph.
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inner circuit

outer circuit

couter g0 c0 a0 c5 g1

c4 a2

c1 a1 c2 g2 c3 a3

Figure 15.: Example of drawing - DCO diagram

[STEP3]
Determine the orientation of curcuits using the DCO algorithm (Figure 15), and

draw subgraphs in the proper part (Figure 16).

[STEP4]
Substitute a curve for a pair of edges.
Finally, we have obtained the figure shown in Figure 17 that corresponds to the

PLCA expression e.
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c2 c3

c4

c5

a2
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p13

p00

p0

l001
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l00

couter

c0

a0

p12

Figure 16.: Example of drawing - location of each subgraph

p0

l0

couter

c0

a0
p1

p2

l1

l2

l3
c1

c2

c3

c4

c5

a1

a2

a3

Figure 17.: The obtained figure


