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Probabilistic Symmetry Reduction for a System with Ring Buffer
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SUMMARY Probabilistic model checking is an emerging technology
for analyzing systems which exhibit stochastic behaviors. The verification
of a larger system using probabilistic model checking faces the same state
explosion problem as ordinary model checking. Probabilistic symmetry
reduction is a technique to tackle this problem. In this paper, we study
probabilistic symmetry reduction for a system with a ring buffer which can
describe various applications. A key of probabilistic symmetry reduction is
identifying symmetry of states with respect to the structure of the target sys-
tem. We introduce two functions; Shiftδ and Reverse to clarify such symme-
try. Using these functions, we also present pseudo code to construct a quo-
tient model. Then, we show two practical case studies; the one-dimensional
Ising model and the Automatic Identification System (AIS). Behaviors of
them were verified, but suffered from the state explosion problem. Through
the case studies, we show that probabilistic symmetry reduction takes ad-
vantage of reducing the size of state space.
key words: probabilistic symmetry reduction, ring buffer, model checking,
the Ising model, AIS

1. Introduction

Given a model representing a system, model checking [1]
verifies whether or not the model satisfies a given specifica-
tion by exhaustively searching the state space of the model.
The technique has successfully been applied to verify many
systems. Probabilistic model checking [2] is an extension
of model checking to probabilistic systems. In both proba-
bilistic and normal model checking, the size of state space
usually increases exponentially as the number of variables
increases. This general problem is called the state explosion
problem.

This state explosion problem brings computational dif-
ficulties which affect the verifiable size and the performance
of verification. To tackle the problem, various techniques
have been proposed. Symmetry reduction is such a tech-
nique, it aggregates states by exploiting presence of symme-
try and reduces the size of state space. This technique has
been used in various applications, for example; cache coher-
ence protocols in [3] and [4], and concurrent C programs in
[5].
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In this study, we employ symmetry reduction for prob-
abilistic system called probabilistic symmetry reduction,
and deal with systems containing ring buffers. Such systems
behave according to the interactions between neighboring
elements of the ring buffer.

The ring buffer is an important data structure that con-
sists of a finite number of elements and has boundary con-
ditions. The structure is used in many applications where
resource bounds require the overwriting of old data. For ex-
ample, in communication processing, ring buffer is used for
temporary storage. The use of this concept of a data struc-
ture and boundary conditions extends beyond the field of
computer science. For example, in a physical simulation,
boundary conditions are assumed to simulate macroscopic
behaviors caused by the results of microscopic behaviors.

The main contributions of this study are; i) to clar-
ify how probabilistic symmetry reduction works, and ii) to
show its application to systems with ring buffers.

When studying probabilistic symmetry reduction, it is
important to determine equivalent classes of symmetries.
We introduce two functions Shiftδ and Reverse which deter-
mine symmetry conditions and identify equivalent classes.
Using these functions, we also show pseudo code for con-
struction of a quotient model for automatic calculation. Us-
ing this pseudo code, we implemented programs which
identify quotient states and calculate transition probabilities.

We specify details of probabilistic symmetry reduction
through addressing two practical cases, a one-dimensional
Ising model and an Automatic Identification System (AIS),
in which a ring buffer plays an important role. The au-
thors have already verified their behavior using probabilis-
tic model checking [6], [7]. However, the state explosion
problem restricted the verifiable size. The efficiency of our
proposed procedures are evaluated by comparing the results
of applying probabilistic symmetry reduction to these case
studies.

There have been many approaches for theoretical cal-
culation and case studies. For example, Kwiatkowska et al.
presented a symbolic implementation of probabilistic sym-
metry reduction using multi-terminal binary decision dia-
grams (MTBDDs) and case studies [8]. This implementa-
tion is built into probabilistic model checker PRISM. Other
case studies include GRIP, a tool which converts a PRISM
model into a reduced model [9]. However, many of case
studies only present results and do not indicate how symme-
try is defined. Even if determination of symmetry is intu-
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itively easy, it is hard to reproduce.
The outline of this paper is as follows. In Sect. 2,

we define probabilistic symmetry reduction, Discrete Time
Markov Chains, and a ring buffer. Procedures for construc-
tion of a quotient model are described in Sect. 3. Section 4
and 5 are case studies. Finally, Sect. 6 concludes this study.

2. Preliminaries

In this section, definitions of probabilistic symmetry re-
duction, Discrete Time Markov Chains and ring buffer are
given.

2.1 Probabilistic Symmetry Reduction

Symmetry reduction is known as an effective technique for
reducing the size of state space by exploiting presence of
symmetry in a model [1], [10].

Given a transition system M = (S ,R), where S is a fi-
nite set of states and R : S ×S is a set of transition relations.
When a map π : S → S is a bijection, we say π is a permu-
tation. If (s, s′) ∈ R and (π(s), π(s′)) ∈ R, we say π preserves
R. Such a π is called an automorphism. For given a group G
of such automorphism under composition of function, there
exists an equivalence relation θ on S where (s, s′) ∈ θ. Given
a set of states S which contains a representative state for
each equivalent class then for each s ∈ S , we define a func-
tion rep : S → S mapping a state to the corresponding
representative. Using this function, we can define a new
transition relation R = {(rep(s), rep(s′)|(s, s′) ∈ R}. A tran-
sition system M = (S ,R) obtained in this manner is called
a quotient model. The quotient model M is bisimilar to the
original transition system M, because all permutations in G
preserve the transition relation R.

The discussion above relates to deterministic systems.
Formal verification has extended its subjects to probabilistic
systems. Recent studies [8], [9] have extended symmetry re-
duction to probabilistic systems. This technique is called
probabilistic symmetry reduction. When applying proba-
bilistic symmetry reduction, there are difficulties caused by
certain characteristics of probabilities. Unlike determinis-
tic systems, probabilistic systems contain probabilities as-
signed to transitions, and their behavior is determined by
such probabilities. The consideration of these probabilities
is a matter of concern when identifying transition relations
of a quotient model.

2.2 Discrete Time Markov Chain

For verification of a probabilistic system, various models are
proposed such as Discrete Time Markov Chains (DTMCs),
Continuous Time Markov Chains (CTMCs), and Markov
Decision Processes (MDPs). Some probabilistic model
checkers, for example PRISM [11], adopts these models as
inputs for its model.

In this paper, we consider systems represented as
DTMCs. A DTMC is defined as follows. Let AP be a

set of atomic propositions. A DTMC is a quadruple M =
(S , s0,T ,L) where S is a finite set of states, s0 ∈ S is
the initial state, T : S × S → [0, 1] is a transition proba-
bility function such that ∀s ∈ S ,

∑
s′∈S T (s, s′) = 1, and

L : S → 2AP is a labeling function. The current state s ∈ S
at computational time t has a transition to state s′ ∈ S at t+1
with probability T (s, s′). A path is a sequence of states. The
probability of a path s0, s1, · · · is

∏
i≥0 T (si, si+1). A DTMC

satisfies the Markov property. That is, if we choose a state s
at a computational time t, then the next state at t+1 depends
only on the current state and is independent of the preceding
states.

2.3 Ring Buffer

A ring buffer is a data structure that contains a number of
finite elements and has periodic boundary conditions. In the
following, we assume that a ring buffer b consists of n ele-
ments and denote the i-th element by b[i]. Then, the periodic
boundary condition is b[n] = b[0].

Transitions of a ring buffer are defined individually. If
a transition in a ring buffer satisfies the Markov property,
a ring buffer can be converted into a DTMC. In this con-
version, an alignment sequence of elements in a ring buffer
corresponds to a state of DTMC, and a probabilistic transi-
tion of a ring buffer guides a transition of DTMC.

3. Construction of a Quotient Model

In this section, we consider procedures of probabilistic sym-
metry reduction for a system that contains a ring buffer. The
general procedure for constructing a quotient transition sys-
tem M = (S ,R) is as follows.

Step 1: Identify quotient states S .
Step 2: Identify a set of probabilistic transitions R.

We also describe pseudo code of these procedures for
automated calculation of probabilistic symmetry reduction.

3.1 Step 1: Identify Quotient States

For this procedure we divide a concrete state space S =
{s0, s1, . . . , sn} into disjoint subsets of states called a par-
tition A = {A0, A1, . . . , An′ } (n′ ≤ n) (ideally, n′ 	 n)
on the state space according to some symmetry conditions
which are described below. Then, a set of quotient states
S = {s0, s1, . . . , sn′ } is formed by representatives of each Ai.
In the process of identifying a set of quotient states, it is im-
portant to choose appropriate symmetry without any effect
of the concrete behaviors to be verified.

Let Buf be a set of ring buffers for a fixed number of
elements m, and a state b′ = {b′[0], . . . , b′[m − 1]} after ap-
plying an operation to a state b = {b[0], . . . , b[m − 1]}. We
define a partition over Buf by taking Buf as S . To judge
whether two ring buffers b and b′ are equivalent, we intro-
duce two functions; Shiftδ and Reverse. These two functions
determine symmetry in different manners.
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First, for an integer δ (0 ≤ δ ≤ m − 1), the function
Shiftδ : Buf→ Buf is defined as follows.

b′[i] = b[(i − δ + m) mod m]

This function shifts all elements of state b to b′. By applying
the function Shiftδ on Buf, theoretical minimum of |A| is |Buf|

m .
Next, for b, b′ ∈ Buf, the function Reverse : Buf→ Buf

is defined as follows.

b′[i] = b[m − 1 − i]

Intuitively, this function maps every element Buf to its cor-
responding mirrored element. In the case of Reverse, theo-
retical minimum of |A| is |Buf|

2 .
Let R be a transition relation between buffers. Both

Shiftδ and Reverse are permutations on Buf and preserve R.
We define the equivalence relation ∼ over Buf such that b ∼
b′ if b′ is obtained from b by finitely applying Shiftδ and
Reverse. We adopt Buf/ ∼, the quotient set of Buf by ∼, as
a partition.

Lastly, for b, b′ ∈ Buf, we define a predicate
Equiv(b, b′) which evaluates true if all elements of b and
b′ are the same, otherwise false. Then Equiv(b, (Shiftδ ◦
Reverse?)(b)) holds, where ◦ is composition of functions
and ‘?’ is a regular expression which indicates Reverse is
applied either zero or one times.

In Fig. 1, we show pseudo code to identify quotient
states from a set of concrete ring buffers for a fixed num-
ber of elements m. The procedure begins with empty sets
A and S which store partition and quotient states, respec-
tively. It identifies quotient states one-by-one by tracing all
concrete ring buffers. For each concrete ring buffer, it is
judged whether or not it is equivalent to an identified quo-
tient state, i.e., the representative of the set a ∈ A, according
to the result of composite function of Shiftδ and Reverse.
Then predicate Equiv(b, (Shiftδ ◦ Reverse?)(b)) is calculated
for all δ (0 ≤ δ < n). Note that δ is searched exhaustively
within the range of 0 to n − 1. If there exists at least one

procedure IdentifyQuotientStates
A = ∅ /* A is a partition*/
S = ∅ /* S contains quotient states */
LOOP:

for all ring buffer b in Buf do
for all the set a in A do

b
′
= representative of a

if there exists at least one δ satisfying
Equiv(b, (Shiftδ ◦ Reverse?)(b))

then
add b to a
continue LOOP

fi
od
create a new element of partition a′ = {b}
add a′ to A

od
S be a set of representatives of A

Fig. 1 Pseudo code to identify quotient states from a set of concrete
states using composite function of Shiftδ and Reverse.

δ that satisfies Equiv, it results that rep(b) = b
′

and b is an
element of the set a. When there is no δ that satisfies Equiv,
then create a new element of partition which consists of an
element b. Last, choose appropriate representatives for ev-
ery element in the partition, and let them be a set of quotient
states. Note that, an arbitrary element of a can be a repre-
sentative. An example to decide such a representative is to
choose the first state in lexicographic order.

3.2 Step 2: Identify Transitions

This section describes how to form a transition probability
matrix for the quotient model which simulates the concrete
model. To do this, it is necessary to identify every transition
probability between quotient states.

In the following, we restrict our consideration to the
case where the quotient model can be considered to be a
DTMC. Historically, transition probabilities of quotient
models were studied by Kemeny and Snell [12] and follow-
ing their study, we introduce calculation of transition prob-
abilities.

First, let us call Pr(s, s′) the transition probability be-
tween concrete states s, s′ ∈ S . Then, the transition proba-
bility from a concrete state s to an element of partition a ∈ A
is given as follows.

Pr(s, a) =
∑

{si∈S |rep(si)=a}
Pr(s, si)

Here, it should be noted that the Markov property is
not necessarily preserved by the construction of a quotient
model. It is stated that a condition known as lumpability
is a necessary and sufficient condition for a quotient model
to satisfy the Markov property with respect to the parti-
tion [12], [13]. That is, a DTMC is lumpable with respect
to the partition A if and only if, for any ai, a j ∈ A, and for
any states sk, sl ∈ ai;

Pr(sk, a j) = Pr(sl, a j)

Schweitzer reported a survey of exact calculation of the
transition probability between quotient states [14]. Let prob-
ability vector at the state s j be ς j which is a vector with el-
ements representing outgoing probabilities from the state s j

to all the states. The transition probability between sets of
partition a, a′ ∈ A is formed as follows.

Pr(a, a′) =

∑
s j∈a
∑

si∈a′ ς j Pr(s j, si)∑
sk∈a ςk

where functional
∑
ς stands for the sum of all elements of

vector ς, i.e., for ς = (ς0, ς1, · · · , ςm−1),
∑
ς ≡ ς0+ς1+ · · ·+

ςm−1.
Assume that quotient model is lumpable with respect

to the partition A, Fig. 2 shows a pseudo code to identify the
transition probability matrix of a quotient model.

In the following sections we present case studies using
programs based on the pseudo code presented here. At the



970
IEICE TRANS. INF. & SYST., VOL.E94–D, NO.5 MAY 2011

end of the process of each program, the number of quotient
states and transitions are summed. Every program outputs
PRISM model. This means that these programs work as a
preprocessing stage in probabilistic model checking.

3.3 Discussion

As described above, lumpability is assumed to identify the
transition probabilities. In general, there is no way of telling
whether or not lumpability holds with respect to a partition
without proof. Therefore, even if existence of symmetry
seems to be obvious, mathematically strict proof of lumpa-
bility is necessary to assure existence of symmetry to apply
probabilistic symmetry reduction. Our proposed procedures
are based on lumpability. Therefore, we start from check-
ing lumpability for every case study described in Sect. 4 and
Sect. 5.

We consider complexity of the procedures to construct
a quotient model. However, exact complexity of the proce-
dures is hard to estimate, because the procedures depend on
the size of the partition A. Here we consider the worst case
in which the size of the partition is the same as the number
of concrete states |S |, i.e., no reduction was achieved. Let
m be the number of elements in a ring buffer, and r be the
range of an element of a ring buffer. For step 1, frequency of
calling predicate Equiv is |Buf| · |A| ·m. In the worst case we
have |Buf| = rm and |A| = rm, respectively. Then the calling
frequency is mr2m. In step 2, the dominant factor in time
complexity is the calculation of transition probabilities. The
frequency of calling Pr is |A|2 = r2m. Therefore complexity
of the procedures is O

(
mr2m

)
.

Note that such worst cases will not occur frequently be-
cause the size of the partition is usually smaller than that of
concrete states. Additionally, we point out that performance
may possibly be improved by considering characteristics of
the target system.

In probabilistic symmetry reduction, it is important to
determine which states are regarded as equivalent. In related
work, [8] adopts component symmetry which considers oc-
currence frequency of elements. Here, we quote an example
from [8] to make the point clear.

In component symmetry, two states (A, B, A, A)
and (A, A, B, A) are equivalent. They would both

/* assume S is lumpable w.r.t. the partition A */
procedure IdentifyTransitionProbabilities
P = (0) /* P is transition probability matrix */
for all element a in A do

for all element a′ in A do

Pr(a, a′) =

∑
s j∈a
∑

si∈a′ ς j Pr(s j, si)∑
sk∈a ςk

store Pr(a, a′) on P as an corresponding element
od

od

Fig. 2 Pseudo code to identify transition probability between elements
of the partition.

be mapped to (A, A, A, B) and (A = 3, B = 1), re-
spectively. [8]

Though it is intuitive, component symmetry does not work
well for a system with a ring buffer in which alignment se-
quence of elements is important. For such systems, com-
ponent symmetry sometimes causes over-classification, i.e.,
the quotient states constructed by component symmetry do
not preserve relations between elements, because compo-
nent symmetry ignores alignment sequence of elements.

On the other hand, our proposed approach preserves
the sequence of elements. As a corollary, reduction rate is
lower than the component symmetry. Meanwhile it may pre-
vent over-classification. In the following sections, we show
two systems in which sequence of elements of a ring buffer
plays an important role.

4. Case Study 1: The 1D Ising Model

Our first case study for probabilistic symmetry reduction is
the Ising model [15], [16] which is a simplified model for
magnets named after Ernst Ising, the physicist who pro-
posed the model. The Ising model is defined on a collec-
tion of elementary objects called spins and its energy. Each
spin is located on a site of lattice, and can only take one of
two values; +1 (up-spin) or −1 (down-spin). A collection
of states of all spins is said to be a configuration. The en-
ergy of the Ising model is determined by interactions among
spins. In the standard form of the Ising model, interactions
among spins are restricted to nearby spins and the energy E
is defined as a function as follows.

E = −J
∑

〈i, j〉
σiσ j − H

∑

k

σk,

where σi is the value of the spin at the i-th site in the lattice,
J is an interaction coefficient, H is the external magnetic
field, and 〈i, j〉 denotes the interaction of two spins σi and
σ j located on nearby sites.

The one-dimensional (1D) Ising model is the one-
dimensionally-confined Ising model in which spins are lo-
cated on sites of a line. We assume that a model consists of
finite n spins σ0, σ1, . . . σn−1, periodic boundary condition
such that σn = σ0, and no external magnetic field. Figure 3
shows a 1D Ising model with a periodic boundary condition
for n spins.

Transitions of the Ising model obey probabilistic dis-
tributions. The Metropolis method is a widely-used method
to define such behaviors. When the Metropolis method is
applied to the Ising model, it is called random spin flipping
and uses the following algorithm:

Fig. 3 One-dimensional Ising model with periodic boundary condition.
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Fig. 4 Correspondence between 1D Ising model and DTMC.

1. Choose a spin σi at random for an individual flip.
2. Evaluate the energy difference ΔE = E′ − E

caused by spin flipping from σi to σ′i = −σi,
where E = E(σ0, . . . , σi, . . . , σn−1) and E′ =

E(σ0, . . . , σ
′
i , . . . , σn−1).

3. If ΔE ≤ 0, the spin flip is accepted. Otherwise, the
spin flip is accepted with probability e−ΔE/T , where T
is a fixed temperature.

4. Repeat steps 1 to 3 for a sufficient number of times to
simulate physical behavior depends on the passage of
time.

Note that if the Ising model obeys random spin flipping, the
next condition only depends on the current condition, i.e.,
it is independent of the past condition. This memoryless
property satisfies the Markov property.

4.1 Symmetry Reduction for the 1D Ising Model

Intuitively, a configuration can be converted into a ring
buffer by considering every spin to an element of ring buffer,
and one random spin flipping guides a transition. Figure 4
shows an example of correspondence between two configu-
rations and concrete states of a DMTC. For the probabilistic
symmetry reduction, we follow the procedures described in
Sect. 3.

4.1.1 States

In considering interactions among spins, we use the Shiftδ
function for identifying quotient states. This is because
physical behaviors of the Ising model is based on alignment
sequence of spins. The Shiftδ function preserves such an
alignment and can aggregate configurations which have the
same intrinsic behavior.

According to the definition of the 1D Ising model,
Shiftδ can be applied in a straightforward manner by consid-
ering a configuration as a ring buffer. Then quotient states
are identified by the pseudo code of Fig. 1. Some character-
istics can be enumerated with respect to the partition A iden-
tified by Shiftδ. First, all states in a set in the partition have
the same energy, i.e., ∀a ∈ A,∀si, s j ∈ a, E(si) = E(s j). This
is obvious because both si and s j have relatively the same
alignment sequence of spins, and the energy of a state is de-
cided by such alignment. Second, for every pair of states
in a set in the partition, there is no one-step transition in a

concrete model if these states are different, ∀a ∈ A,∀si ∈
a,∀si � s j ∈ a,Pr(si, si) � 0. This is because if two states
si and s j are different then at least two spins have different
values, and one random spin flipping only changes the value
of one spin. Otherwise, if two states si and s j are the same
then there exists a transition with probability greater than 0.
In this case spin flipping is not accepted.

In addition, we apply the functions Shiftδ and Re-
verse to observe efficiency when both of the functions
are applied. This is because quotient states identified
by Shiftδ and Reverse overlap. For example, in the
case of 6 spins, two configurations (+1,+1,+1,−1,−1,−1)
and (−1,−1,−1,+1,+1,+1) are identified as equivalent
by either Shiftδ or Reverse. But two configurations
(+1,−1,−1,+1,+1,−1) and (−1,+1,+1,−1,−1,+1) are
only identified as equivalent by applying both Shiftδ and Re-
verse.

4.1.2 Probability Transitions

For step 2, we identify transitions between quotient states
on the assumption of the random spin flipping algorithm.

As described in Sect. 4.1.1, all configurations in an
equivalent class have the same energy. Therefore, for two
fixed sets in the partition, the energy difference is the same.
These facts derive lumpability with respect to the partition
A, such that ∀ai, a j ∈ A,∀sk, sl ∈ ai,Pr(sk, a j) = Pr(sl, a j).

Recall that the transition probability between sets of
partition a, a′ ∈ A is formed as;

Pr(a, a′) =

∑
s j∈a
∑

si∈a′ ς j Pr(s j, si)∑
sk∈a ςk

For fixed s j and si, the transition probability between these
states is constant. Here, let p ≡ Pr(s j, si) and c(a, a′) be
the total number of transitions between states s j and si, i.e.,
c(a, a′) ≡ |{(s j, si) | s j ∈ a, si ∈ a′}| for convenience. Then,
for an arbitrary pair a, a′ ∈ A, we have

Pr(a, a′) =
c(a, a′)
|a| p

We can then identify the transition matrix by calcu-
lating all transition probabilities according to the pseudo
code 2.

4.2 Experimental Results

We implemented a program to construct a quotient model of
the 1D Ising model. Table 1 shows the results of applying
probabilistic symmetry reduction compared with concrete
states and transitions. In Table 1, the second column shows
the result of applying both Shiftδ and Reverse, the third col-
umn shows the result of only applying Shiftδ and the last
column shows the result without any reduction.

In our implementation we adopt some heuristics to im-
prove the performance of calculations. For example, we use
the fact that all configurations in an element of a partition
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Table 1 Results of probabilistic symmetry reduction for the 1D Ising
model, comparing after/before reduction.

Shiftδ+Reverse Shiftδ concrete
spins states trans states trans states trans

6 13 48 14 61 64 428
8 30 166 36 252 256 2258

10 78 608 108 1061 1024 11142
12 224 2302 352 4329 4096 52924
14 687 8958 1182 17370 16384 244918
16 2250 35167 4116 69317 65536 1111906

Fig. 5 Number of states (the Y-axis), and the value for the reduction ratio
of quotient states per 1/n for Shiftδ and per 1/(2n) for Shiftδ + Reverse (the
secondary Y-axis).

have the same energy. This fact induces that if the energies
of two configurations are different, these two configurations
are not in the same element of partition. Then, we can de-
crease frequency of calling the Shiftδ function.

4.3 Evaluation

We illustrate the effect of probabilistic symmetry reduction
in Fig. 5. The X-axis is the number of spins n, and the Y-
axis reflects three results of the number of states; concrete
states, quotient states applied Shiftδ and quotient states ap-
plied Shiftδ + Reverse. The secondary Y-axis reflects the
value for the normalized reduction ratio of quotient states.
These values are divided by the theoretical minimum val-
ues; i.e., 1/n for Shiftδ and 1/(2n) for Shiftδ + Reverse.

As we can see, the normalized reduction ratio con-
verges to 1. This indicates that composition of Shiftδ and
Reverse effectively acts close to its theoretical limitation.
Therefore, we can conclude that the Shiftδ◦Reverse function
has power to reduce the size of state space of the 1D Ising
model. Note that the normalized reduction ratio is greater
than 1 for all n. This is because, there are elements of the
partition for which the number of equivalent classes is less
than 2n. For example, a configuration consisting only of
up-spins forms a singleton set in the partition.

5. Case Study 2: AIS

The second case study is the Automatic Identification Sys-
tem (AIS) which is specified by the International Maritime
Organization (IMO) and is required to be mounted on ev-
ery ship to ensure safety at sea [17]. The AIS, ship-to-ship
communication system, uses the Self Organized Time Di-
vision Multiple Access (SOTDMA) method which defines
each minute as one frame and each frame is divided into
2250 slots. Individual ships are assigned a slot in every
frame and broadcast navigation data such as identification
code, position, and course on this slot. If more than one
ship transmits a message in the same slot, data collision oc-
curs and the messages are lost. To avoid such collisions,
each ship reserves its own slot in the next frame. Every ship
has its own table in which reservations for the current frame
and the next frame are written. When its turn comes in the
current frame, a ship sends a message to reserve a slot in the
next frame with its navigation data. When a ship receives a
message from another ship, it writes the information in its
own table and selects a next slot. Because communications
in AIS are not interactive, simultaneous reservations of mes-
sages may occur and causes “double-booking”. As a result,
data collision occurs, and much worse, ships do not know
this fact. This problem has not been seriously considered
because probability of the occurrence of such an event is low
and the problem can be eliminated over the long run. The
authors have proposed several new strategies for selecting a
slot and constructed models on these strategies. These were
used to analyze the probability and allowable rate of the oc-
currence of bad events using probabilistic model checking
and verified that these models can ensure safety [7].

5.1 Symmetry Reduction for the AIS

In this section, we address probabilistic symmetry reduction
of the detmodel that is based on a deterministic 1-neighbor
strategy for the AIS. In this model, the reservation table is
determined as follows. Each ship compares the occupants
of adjacent slots on either side of its own slot in the cur-
rent frame (called a current slot). If more ships exist in the
left slot than the right one, the left slot is selected as a next
frame. If more ships exist in the right slot than the left one,
the right slot is selected as a next frame. If these numbers
are the same, either of left/right slot or the current slot is se-
lected at probability 1/3, respectively [7]. Figure 6 shows an
example of det model which presents transition rules.

Here, we formalize the det model. A reservation table
represents the state of reservations of all ships. It is defined
as s = {v0, . . . , vm−1} where m is the number of slots in a
frame and each vi is the number of ships reserving the i-slot.
We do not distinguish ships and consider only the number
of ships that reserve a slot. The reservation table can be
regarded as a ring buffer whose element may have multiple
values, while only −1 or 1 is allowed in the Ising model.

This model has the Markov property, since the next
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Fig. 6 Example of det model and its transitions.

Fig. 7 Example of equivalent states. States s and s′ are judged as equiv-
alent by Shift2.

state is defined depending only on the current state. Thus
we can convert it to a DTMC.

Assume that there exist n ships (n < m). If a ship ship j

(0 ≤ j ≤ n − 1) selects the next slot on some reservation
table with a probability p j, then the transition probability to
the next reservation table is

∏n−1
j=0 p j.

5.1.1 States

First, quotient states are identified by the pseudo code of
Fig. 1. According to the result of the Ising model, the com-
position of Shiftδ and Reverse reduces the number of quo-
tient states. Therefore we apply both Shiftδ and Reverse to
the AIS. Figure 7 shows an example of equivalent states
judged as equivalent by Shift2.

5.1.2 Probability Transitions

Next, we construct a quotient model with consideration of
transition probabilities.

After identifying quotient states, partition A is ob-
tained. In the det model, the next state of each slot is de-
termined depending only on the current slot and its nearest
neighbors, the sequence of elements in the reservation table
is preserved in applying Shiftδ or Reverse. Therefore, for
any pair ai, a j ∈ A (ai � a j), and for any state s ∈ ai, if there
exists a transition from s to s′ ∈ a j, there exists no s′′ ∈ a j

such that s′ � s′′. Moreover, for any pair s, t ∈ ai (s � t), if
there exist transitions from s to s′ ∈ a j, and from t to t′ ∈ a j,
Pr(s, s′) = Pr(t, t′) holds. Therefore, for any ai, a j ∈ A, and
for any states sk, sl ∈ ai, Pr(sk, a j) = Pr(sl, a j) holds, that is,
lumpability is satisfied.

Then, for any pair of quotient states s, s′, transition
probability between s and s′ is calculated according to the
pseudo code of Fig. 2.

5.2 Experimental Results

Table 2 shows the results of applying probabilistic symme-

Table 2 Results of probabilistic symmetry reduction for the AIS, com-
paring after/before reduction.

Shiftδ + Reverse concrete
ships/slots states transitions states transitions

3/10 14 87 220 3740
4/13 92 1578 1820 75816
5/16 632 28997 15504 1.6 × 106

6/20 5296 650531 1.8 × 105 4.6 × 107

Fig. 8 Reduction ratio of states/transition, and the value for the reduction
ratio of states per 1/(2m).

try reduction comparing to concrete states and transitions.
The experiment was repeated for several problem sizes with
ratio of ships and slots kept almost stable. If we increased
the number of ships more than seven, we could not obtain
the results for the following two reasons: (i) We could not
obtain the result of a concrete model since PRISM could
not produce an output. (ii) We could not obtain the result
of a quotient model since PRISM could not load the entire
program code of the quotient model.

5.3 Evaluation

Figure 8 shows the results in Table 2. The X-axis is the
numbers of ships/slots and the Y-axis is the number of states.
The second Y-axis is the value for the reduction ratio of quo-
tient states per 1/(2m) where m is the number of the slots.
The normalized reduction ratio is close to 1, which matches
the result of the theoretical analysis. The number of ships
and the slots increases, the ratio is estimated to converge.
Note that the normalized reduction ratio is about 1.2 when
m is 3, whereas it is about 2.4 when the number of spins is
6 in the Ising model. This indicates that the Shiftδ ◦ Reverse
function acts much more effectively in the AIS.

6. Conclusion

We studied probabilistic symmetry reduction for a system
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with ring buffer, and described two case studies.
The procedure to construct a quotient model using

probabilistic symmetry reduction consists of two steps;
i) identifying quotient states and ii) identifying transition
probabilities. To identify quotient states, we introduced two
functions Shiftδ and Reverse to define symmetries in con-
sideration of structure of a ring buffer. We presented pseudo
code to construct a quotient model using these functions and
procedures to identify transition probabilities.

Based on the pseudo code, we presented two case stud-
ies, the one-dimensional Ising model and the Automatic
Identification System (AIS), in which a ring buffer plays an
important role. Through these case studies, we showed how
the process of probabilistic symmetry reduction works, and
evaluated the efficiency of the Shiftδ and Reverse functions.
Many systems, not limited to fields of information science,
have interactions based on a ring buffer. Therefore, the pro-
posed procedures may easily be applied to them.

Probabilistic symmetry reduction is considered as a
preprocessing step in probabilistic model checking. To that
end, construction of a quotient model is time-consuming.
However, once a quotient model is constructed, it is reusable
for verification of existing specifications. The reduced
model achieves better performance and enables verification
of larger systems.

We hope to extend this study to the analysis of more
complicated systems. For example, the two-dimensional
Ising model which shows more interesting physical behav-
iors, such as phase transition. Another example is more
practical verification of the AIS in which realistic number
of ships are modeled. Further reduction should be required
for that purpose. We plan to study combination of our pro-
posed procedures and other abstraction techniques such as
predicate abstraction [18], [19].
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