
Available online at www.s
ien
edire
t.
om

Pro
edia Computer S
ien
e 00 (2015) 000�000

www.elsevier.
om/lo
ate/pro
edia

10th International Conferen
e on Future Networks and Communi
ations, FNC-2015 and the 12th

International Conferen
e on Mobile Systems and Pervasive Computing, MobiSPC 2015

Formalization of the Behavior of Content-Centri
 Networking

Sosuke Morigu
hi

a,�

, Takashi Morishima

a

, Mizuki Goto

a

, Kazuko Takahashi

a

a

Kwansei Gakuin University, 2-1, Gakuen, Sanda, 669-1337, JAPAN

Abstra
t

Content-Centri
 Networking (CCN in short) is a
ommuni
ation ar
hite
ture whi
h is based on the name of
ontents, rather than

on addresses. A proto
ol used in CCN is not for End-to-End
ommuni
ations, but for network-wide
ommuni
ations. Ea
h node

sends pa
kets to
onne
ting nodes, and these nodes
ommuni
ate other nodes
onne
ting with them. When data are sent, the

re
eiving node stores it and forwarding other nodes. Su
h stores in
rease reliability of data and divide loads for servers. However,

the behaviors and performan
es of the proto
ol are under investigation. In this paper, we formalize the CCN proto
ol using proof

assistant Coq. We
reate two parts of formalization, the network module type and the behaviors of the proto
ol. The network

module type has several parameters su
h as an data type denoting nodes,
onne
tion relations between them, and some status

depending on CCN. Then we prove two spe
i�
ations about
ontent-deliveries in CCN. With a spe
i�
 network des
ription based

on the module type, we get the proofs of these spe
i�
ations on the given network dire
tly. This result
an be used to enhan
e the

reliability of CCN proto
ols.

 2015 The Authors. Published by Elsevier B.V.

Peer-review under responsibility of the Conferen
e Program Chairs.

Keywords: Content-Centri
 Networking, Proto
ol Veri�
ation, Coq

1. Introdu
tion

With the growing trend of
loud
omputing, users
ommonly know only that their data exist somewhere in a

network; they tend to be interested only in fast and safe retrieval, and the lo
ation of the data is unimportant. With

internet proto
ol (IP),
ommuni
ation is undertaken by assigning an address name to a server, i.e., where a
ontent

is lo
ated. When a user wants to a

ess some data, they make an a

ess request to the server and
an a

ess the

ontent only if the request arrives at the server. However, the user typi
ally does not
are about the physi
al lo
ation

of
ontents, but rather is interested only in the
ontent. The Content-Centri
 Network (CCN) was developed

1

as an

alternative network ar
hite
ture that fo
uses not on �where� but on �what�. In CCN,
ommuni
ation is undertaken

based on the name of the
ontent, rather than the lo
ation thereof. The fundamental idea of CCN is broad
asting and

storing information embedded at ea
h node. End-to-end
ommuni
ation is not required and the user
an retrieve data

from a
loser node by mat
hing with the stored information. As a result, the eÆ
ien
y and the reliability of network

an be in
reased, and the response time
an be redu
ed. Although prototype implementations of this ar
hite
ture

�

Corresponding author. Tel.: +81-79-565-8391.

E-mail address:
higuri�a
m.org

1877-0509

 2015 The Authors. Published by Elsevier B.V.

Peer-review under responsibility of the Conferen
e Program Chairs.

2 S. Morigu
hi et al. / Pro
edia Computer S
ien
e 00 (2015) 000�000

have been developed, the te
hnique is still under development. Many signi�
ant issues remain, in
luding se
urity,

ongestion, and deadlo
k. For example, se
urity vulnerabilities have been pointed out

2

, and a revised proto
ol was

proposed to
over the drawba
ks of �ooding

3

. Corre
tness of the behavior has not been guaranteed, either.

It is diÆ
ult to show behavioral
orre
tness over a network, be
ause it requires
he
king all possible
ases with

regards to the network topology, data stru
ture, and timing of
ommuni
ation. Corre
tness
an be
he
ked using

test and runtime veri�
ation; however, it is not
omplete. So far, in the development of network systems, emphasis

has been pla
ed on network performan
e, and stri
t
orre
tness of the behavior has not been required. It has been

onsidered suÆ
ient if
ommuni
ations su

eed at a high probability; even if it may fail or lo
k, whereupon timeout

and retry me
hanisms
an be used to solve the problem. However, a single error may result in a signi�
ant failure

that is diÆ
ult to re
over from in a large,
ompli
ated network. Therefore, it is
onsiderably important to
ertify the

orre
t behavior of proto
ols.

Wang emphasized the importan
e of providing a sound network design, and proposed de
larative networking and

proto
ol veri�
ation using a proof assistant

4

. Proof assistants represent a formal method to develop a
erti�ed system.

There have been several reports of the formalization of network proto
ols using proof assistants

5

, and primarily issues

with routing have been
onsidered, without
onsidering the
ontents of pa
kets. On the other hand, as CCN does not

employ end-to-end
ommuni
ation, we must des
ribe the treatment of the
ontents of pa
kets as well as the routing.

An alternative formal method is model
he
king

6

, and there have been several reports of the use of model
he
kers

on veri�
ation of network proto
ols

7,8

. However, there exists a state explosion problem in model
he
king.

In this paper, we aim at formalizing CCN and showing behavioral
orre
tness using the proof assistant Coq

9

.

In CCN, a node stores data on the nodes from whi
h messages are re
eived, and so may
a
he previously re
eived

data. The node looks up the stored information and
he
ks whether any mat
hing data exist. If this data mat
hing is

su

essful, the node returns the
a
hed data to the requester. This mat
hing is
arried out using the
ontent name, and

the request does not always have to go to the server. We de�ne sending a pa
ket and updating the stored information

as events, and
reate an indu
tive model using a sequen
e of events. For behavioral
orre
tness, we take the property

that a node
an retrieve a
ontent if and only if the user sends a request, when the
ontent exists in the network.

There are several possible routes, be
ause a request may be sent to any node on whi
h
ontents are
a
hed. We prove

orre
tness using indu
tion on a sequen
e of events for all possible
ases. These
ases are tangled and diÆ
ult to

he
k exhaustively by hand. Coq will
he
k su
h exhaustiveness me
hani
ally and tell the rest of
ases if exists. This

is the �rst attempt to give a formalization of CCN proto
ol using a proof assistant.

We des
ribe temporal properties su
h as eventuality and
ausality using a sequen
e of events. This is a di�erent

approa
h from that typi
ally employed in model
he
king, in whi
h the entire system is modeled as a state transition

system. We solve the problem of state explosion using an indu
tion s
heme with the proof assistant. Note that the

transition system does not
onsider performan
e of the behaviors

1

.

The rest of this paper is organized as follows.

� We explain CCN in se
tion 2.

� In se
tion 3 and se
tion 4, we formalize a network and behaviors of the proto
ol, respe
tively.

� Se
tion 5 shows two spe
i�
ations for CCN and introdu
tions of their proofs.

� We show related work in se
tion 6 and summarize in se
tion 7.

In this paper, we explain formalization of CCN using Coq, but we will show very limited parts of s
ripts due to

a spa
e
onstraint. You
an see whole s
ripts of the formalization and proofs at https://github.
om/
higuri/

CCNproto
ol.

2. Content-Centri
 Networking

Here, we explain the CCN proto
ol using an example. In re
ent network proto
ols su
h as HTTP, there are three

kinds of nodes, users sending requests, servers re
eiving (and replying) requests, and rooters forwarding requests. In

1

Rigorously, the system is not runnable sin
e it is de�ned as predi
ates on a higher-order logi
.

S. Morigu
hi et al. / Pro
edia Computer S
ien
e 00 (2015) 000�000 3

Fig. 1: Simple network with 7 nodes.

Table 1: FIBs in Fig. 1

Content-Name From To Content-Name From To

1 R1 R2
2 R1 R2

R2 S1 R2 R4

R3 S2

R4 R2 R4 S2

ontrast, in CCN, ea
h node
an be a user, a rooter and/or a
ontent-server. Here, we use these words for a requesting

node, a node forwarding pa
kets and a node retaining some
ontents from the beginning, respe
tively. This se
tion is

basi
ally the same with the original paper

1

, but we abstra
t some
on
rete parts whi
h do not matter the formalization.

Assume that a network is shown in Fig. 1. There are a user U, rooters R1 to R4, and servers S1 and S2. We have

two
ontents C1 and C2 in the network, stored in S1 and S2 respe
tively. C1 is named
1 and C2 is
2.

In the
ase Uwants to a

ess C1, U sends interest pa
kets to all
onne
ting nodes, R1 and R3, and waits data pa
kets.

Interest pa
kets
ontain
ontent-names su
h as
1 and
2

2

, and data pa
kets
ontain
ontent-names and
ontents. In

the CCN proto
ol, we use only interest/data pa
kets to send and re
eive requests/data.

R1 re
eives an interest pa
ket with
1, it
he
ks it has C1 or not. If it does not have C1, then it
he
ks its Forwarding

Information Base (FIB). FIB is a mapping from
ontent-names to lists of nodes for forwarding interest pa
kets. Let

FIBs for the nodes be shown in Table 1. If there is no mapping from given
ontent-names, interest pa
kets with them

are dropped. In this
ase, R1 forwards the pa
ket to R2. Also, R1 stores the node (U) from where the pa
ket is sent in

its Pending Interest Table (PIT) . R3 also re
eives the interest pa
ket with
1, but its FIB does not have mapping from

1, thus R3 drops the pa
ket.

After R2 forwarding an interest pa
ket with
1 in the same manner, S1 re
eives an interest pa
ket with
1. In this

ase, S1 replies with a data pa
ket
ontaining C1 to R2 rather than forwarding the pa
ket or dropping it.

When R2 re
eives a data pa
ket, it
he
ks whether it already has a
ontent. If it has, the pa
ket is dropped. If it

does not have, it sear
hes PIT for the
ontent. In this example, R2 has an entry for
1 (sent from R1), so R2 forwards

the pa
ket to R1. At the same time, R2 stores the
ontent. After storing the
ontent, if R2 re
eives interest pa
kets

with
1, it replies dire
tly with data pa
kets
ontaining C1 as if it is a
ontent-servers. When U re
eives a data pa
ket

ontaining C1, it stores the pa
ket sin
e it requested the
ontent.

In the
ase U wants C2 (initially served by S2), there are two network path from U to S2 through FIBs, R3 to S2 and

R1, R2, R4 to S2. We
annot de
ide from whi
h path U will re
eive the
ontent, and the both
ases are valid in CCN.

2

In the original CCN proto
ol, a
ontent-name is in the path format su
h as /foo/bar/musi
.mp3. In this paper, we omit su
h details.

4 S. Morigu
hi et al. / Pro
edia Computer S
ien
e 00 (2015) 000�000

3. Model of Networks

We divide formalization of the CCN proto
ol to two parts; one is a network model and the other is a behavioral

model based on the network. This se
tion shows the network model, whose topology is parameterized.

The model has some parameters and assumptions for the topology. More spe
i�
ally, parameters are about nodes,

onne
tions, initial
ontent-servers and FIB.

Node. First of all, all nodes should be identi�ed by a data type. We require all nodes
an be distinguishable with ea
h

other.

Conne
tion. For ea
h node, all nodes
onne
ting the node should enumerable as lists. We de�ne it as a fun
tion from

nodes to lists of nodes. Additionally,
onne
tions should be symmetri
, i.e., if node n

1

onne
ts with node n

2

, then n

2

should
onne
t with n

1

also.

Initial Content-Server. Some nodes should have
ontents initially. In the formalization, we require de
idability

whether a node has a spe
i�

ontent or not.

Forward Information Base. FIB is formalized as a fun
tion from node to node lists, like
onne
tions. Also, we require

that nodes in FIB should
onne
t, i.e., if node n

1

is in node n

2

's FIB list, then n

1

and n

2

should
onne
t ea
h other.

This feature for
es forwarded pa
kets are transfered between
onne
ting nodes. If a node does not have FIBs for a

ontent-name, the returned list for the node and the
ontent-name should be empty.

. We have predi
ate over nodes and
ontent-names, named FIBrea
hable, whi
h shows a given node is rea
hable

at some initial
ontent-servers for a given
ontent-name by tra
ing FIB. This ensures that the node is a

essible to the

data in the network.

If we de�ne the module denoting the network in Fig. 1, we may de�ne the nodes as an indu
tive data type in Coq.

Indu
tive Nodes : Set := | U | R1 | R2 | R3 | R4 | S1 | S2.

The following
ode denotes
onne
ted nodes for a given node.

Definition Conne
ted_list (v : Nodes) : list Nodes :=

mat
h v with

| U => [R1; R3℄

| R1 => [U ; R2℄

| R2 => [R1; S1; R4℄

| R3 => [U ; S2℄

| R4 => [R2; S2℄

| S1 => [R2℄

| S2 => [R3; R4℄

end.

In the similar manner, we de�ne
ontent-names (
1 and
2) and FIBs for ea
h node.

Indu
tive Content_Names : Set :=
1 |
2.

Definition FIB_list (v : Nodes) (
 : Content_Names) : list Nodes :=

mat
h
 with

|
1 => mat
h v with

| R1 => [R2℄

| R2 => [S1℄

| R4 => [R2℄

| _ => [℄

end

|
2 => mat
h v with

| R1 => [R2℄

| R2 => [R4℄

| R3 => [S2℄

| R4 => [S2℄

| _ => [℄

end

end.

S. Morigu
hi et al. / Pro
edia Computer S
ien
e 00 (2015) 000�000 5

If FIB_list with a node and a
ontent name returns an empty list, it means the node does not have any FIBs for the

ontent.

As we explained before, we have to prove some restri
tions about nodes,
onne
tion relations, et
. However, in the

ase of the simple network, these restri
tions are straightforward and easy to prove. When we make a module named

CCN_SimpleNetwork
ontaining the previous de�nitions, Coq
he
ks whether required parameters are in the module.

If some restri
tions are not shown, Coq does not allow to de�ne the module.

4. Behaviors of Proto
ols

In CCN, we
an observe some a
tions and some pa
kets produ
ed by a
tions. We say su
h a
tions events hereafter.

An event is a request of a
ontent (Request in the formalization), forwarding an interest pa
ket (ForwardInterest),

adding a node into PIT (AddPIT), replying with a data pa
ket (ReplyData), forwarding a data pa
ket (ForwardData),

or storing a
ontent in given data pa
ket (StoreData).

We formalize the behaviors of a given network as a sequen
e of events and a list of pa
kets. They denote all

o

urred events sorted in
hronologi
al order and all sent but unpro
essed pa
kets, respe
tively. This means that the

formalization of the proto
ol is
on
urrent rather than parallel. In this paper, we
all a pair of the event sequen
e and

the pa
ket list a snapshot.

There are no expli
it PITs nor stored
ontents in a snapshot, but we
an
al
ulate them from the event sequen
e

by pi
king up AddPIT and StoreData events. In every time we need them, we use fun
tions
al
ulating them in the

formalization.

The behaviors of the proto
ol are de�ned as follows. In any time, every node
an request a
ontent if it does not

have the
ontent. Other behaviors are based on the snapshot.

� If there exists an unpro
essed interest pa
ket, and a node has a requested
ontent, then it replies with a data

pa
ket
ontaining the
ontent.

� If there exists an unpro
essed interest pa
ket, but no FIB is available for a
ontent-name
ontained in the pa
ket,

then a node drops the pa
ket.

� If there exists an unpro
essed interest pa
ket, but no PIT entries for a
ontent-name
ontained in the pa
ket,

then a node forwards the pa
ket to nodes in FIB and add an PIT entry.

� If there exist an unpro
essed interest pa
ket and PIT entries for a
ontent-name
ontained in the pa
ket, then a

node adds an PIT entry but does not forward the pa
ket.

� If there exists an unpro
essed data pa
ket, but a node has a
orresponding
ontent, then it drops the pa
ket.

� If there exist an unpro
essed data pa
ket and PIT entries for a
orresponding
ontent-name, then it stores the

ontent and forwarding the pa
ket.

� If there exists an unpro
essed data pa
ket and a node requested a
orresponding
ontent, then it stores the

ontent.

� If there exists an unpro
essed data pa
ket, but a node did not request a
orresponding
ontent and there are no

PIT entries for the
ontent-name, then it drops the
ontent.

These unpro
essed pa
kets are sele
ted nondeterministi
ally. We do not restri
t orders of pro
essing pa
kets. This

means that the behaviors are
ompletely asyn
hronous.

In Coq, we de�ne an indu
tive predi
ate that a snapshot
omplies with the CCN proto
ol as CCNproto
ol. The

predi
ate is satis�ed with an initial state whi
h is an empty event sequen
e and an empty list, and a snapshot generated

by the behavior des
ribed above from another snapshot satisfying CCNproto
ol. Sin
e CCNproto
ol is an indu
tive

predi
ate, we
an proof by indu
tion on the behaviors if a given snapshot
omplies with the proto
ol.

5. Spe
i�
ations and Proofs

We prove two spe
i�
ations for the CCN proto
ol as behavioral
orre
tness. One is similar to eventuality of

ontent-delivers, and the other is
ausality of arrivals of the
ontents. We
all the former forward lemma and the latter

6 S. Morigu
hi et al. / Pro
edia Computer S
ien
e 00 (2015) 000�000

ba
kward lemma. Before proving them, we show any pa
kets in snapshots
omplying with the CCN proto
ol are sent

between
onne
ting nodes.

Proofs for the forward/ba
kward lemma are
onstru
ted on parameters des
ribing networks, but not on imple-

mentations of networks. We
an get proofs for forward/ba
kward lemmas by applying the proof module, named

CCN_Proto
ol_Verifi
ation to the network module des
ribing a network you intend. In other words, we prove for-

ward/ba
kward lemmas of the CCN proto
ol in any networks we
an des
ribe in Coq, e.g. �xed number of nodes or

unbound number of nodes with indu
tive topologies. For example, for the simple network des
ribed in se
tion 3, the

proofs are de�ned with the following
ommand.

Module CCN_SimpleNetwork _Verifi
ation := CCN_Proto
ol_Verifi
ation CCN_SimpleNetwork .

Import CCN_SimpleNetwork _Verifi
ation .

Networks with �xed number of nodes are very easy to des
ribe in Coq sin
e we
an enumerate the nodes as

indu
tive data types. We also de�ne networks for unbound number of nodes
on�gurating half line and binary tree.

5.1. Forward

If we have requested some
ontents, we expe
t that we eventually get
ontents. However, without strong restri
-

tions, we
annot prove su
h eventuality.

Sin
e ea
h node behaves
on
urrently, there is an event sequen
e su
h that some nodes send interest pa
kets

easelessly. In the
ase, requests from others may be abandoned and never pro
essed. This is not
aused by the

formalization sin
e in general we
annot assure that any requests will be pro
essed properly.

To avoid su
h problems, we de�ne the spe
i�
ation of forward lemma as follows.

Theorem CCN_Forward_Request :

forall (v : Node) (
 : Content_Name) (es : list Event) (ps : list Pa
ket),

(exists v' : Node, Conne
ted v v' /\ FIBrea
hable v'
) ->

CCNproto
ol (Request v
 :: es) ps ->

forall (es' : list Event) (ps' : list Pa
ket),

CCNproto
ol (es' ++ Request v
 :: es) ps' ->

(exists C : Content
,

In (StoreData v
 C) (es' ++ Request v
 :: es))

\/ (exists (C : Content
) (es'' : list Event) (ps'' : list Pa
ket),

CCNproto
ol (StoreData v
 C :: es'' ++ es' ++ Request v
 :: es) ps'').

The spe
i�
ation says that, after a node requests
ontents, the network snapshot is always under following states:

1. the node already re
eived the
ontent (i.e., StoreData is in the event sequen
e), or

2. the node may re
eive the
ontent after some times.

We split the spe
i�
ation into two parts, one is for users requesting
ontents, and the other is for rooters forwarding

interest pa
kets. The spe
i�
ation for users is the same as the above ex
ept that Requests are ForwardInterests.

First we prove the spe
i�
ation for rooters and then that for users. The proof for rooters is done by indu
tion on

the FIBrea
hable predi
ate and
ase analysis for the snapshots. It is about 140 lines of
odes to prove, and lemmas

proved by around 1000 lines of
odes. The proof for users uses
ase analysis and the previous spe
i�
ation. It is also

about 140 lines of
odes. Sin
e the
ase analysis is very
omplex, without proof assistant, we might miss some
ases.

5.2. Ba
kward

The ba
kward lemma says that if a node re
eives data pa
kets, then it sent interest pa
kets (as forwarding pa
kets

or requesting
ontents) before it re
eives. This kind of
ausality is possible to des
ribe dire
tly with past-time opera-

tors

10

. Su
h operators are known to be des
ribable with usual temporal logi
 su
h as CTL and LTL, but it is far from

su

in
t nor intuitive

6

. In
ontrast, we
an des
ribe it without any extra operators.

Theorem CCN_Ba
kward :

forall (v : Node) (
 : Content_Name) (C : Content
) (es : list Event)

(ps : list Pa
ket),

S. Morigu
hi et al. / Pro
edia Computer S
ien
e 00 (2015) 000�000 7

CCNproto
ol (StoreData v
 C :: es) ps ->

In (Request v
) es \/ In (ForwardInterest v
) es.

The proof is done by indu
tion on the proto
ol behaviors. It is about 10 lines of (small automated)
odes to prove,

and one lemma (3 lines to prove).

6. Related Work

The formalization of behavioral
orre
tness of a network proto
ol, su
h as routing, forwarding, and addressing,

has also been well studied. Karsten et al. showed meta-level axiomatization for forwarding using Hoare-style logi

11

.

However, their proof was
arried out using a pen-and-paper approa
h. Felty et al. des
ribed a s
alable
oherent

interfa
e (SCI)
a
he
oheren
e proto
ol using Nurpl

12

. Bharadwaj et al. gave an indu
tive formalization for routing

algorithms and proved their
orre
tness using Coq and the model
he
ker SPIN

13

. Bhargavan et al. formalized an

ad-ho
 network proto
ol and proved its behavioral
orre
tness using HOL and SPIN

5

. Stewart showed a veri�
ation

of de
larative network programs using Coq

14

.

In most of these previous reports, the authors fo
used on the
orre
tness of routing. However, here we fo
us on the

ontent of pa
kets, be
ause CCN employs
ontent-based
ommuni
ation.

An alternative approa
h to proving behavioral
orre
tness is the use of a model
he
ker

6

. The required spe
i�
ation

an be represented using temporal logi
, be
ause there are `always' and `eventuality' operators. There have been a

number of attempts to verify networks using model
he
kers

7,8

. Rea
hability and memory leak were analyzed in

these works. However, their main goal was bug dete
tion, whereas our goal is to give a proof of the
orre
tness of

the behavior of the network. Moreover, there exists a state explosion problem in model
he
king, whereas this
an be

avoided through the use of indu
tion via a proof assistant. Also, we have parameterized network topologies, but it is

hard to represent in model
he
king.

We have formalized the
ausality of events in a proliferating sequen
e of events in both the forward and ba
kward

dire
tions. It follows that we
an spe
ify the property �if users send a message in any situation, then they eventually

re
eive the
orresponding answer� and �if users re
eive a message, then they sent the
orresponding request� without

expressing a time expli
itly.

7. Con
lusion

We formalized the CCN proto
ol using proof assistant Coq. We
reated an indu
tive model using a sequen
e of

events and showed forward validity and ba
kward validity. Although we used Coq, this method
an be applied using

many other proof assistants.

The main
ontributions of this work are twofold: (1) This represents the �rst attempt to give a formalization of a

CCN proto
ol using a proof assistant. This
an signi�
antly enhan
e the reliability of a CCN proto
ol. (2) We have

shown the formalization of
ausality of events in a proliferating sequen
e of events, in both the forward and ba
kward

dire
tions. This represents an extension of the appli
ation areas of proof assistants.

In the future, we plan to extend the proto
ol with limiting a number of
ontents stored in a node. We believe

su
h limitations do not break the spe
i�
ations proven in this paper. In
ontrast, we already know that limitations of

numbers of PITs break the forward-spe
i�
ation be
ause a request may drop out of PITs. To keep the spe
i�
ation,

we need other fun
tions su
h as resending requests. Sin
e they are not proto
ol requirements, we should dis
uss

whi
h fun
tions are better for the proto
ol.

Referen
es

1. Ja
obson, V., Smetters, D.K., Thornton, J.D., Plass, M.F., Briggs, N.H., Braynard, R.L.. Networking named
ontent. In: Pro
eedings of

the 5th International Conferen
e on Emerging Networking Experiments and Te
hnologies; CoNEXT '09. New York, NY, USA: ACM. ISBN

978-1-60558-636-6; 2009, p. 1�12. doi:10.1145/1658939.1658941.

2. Goergen, D., Cholez, T., Fran
̧ois, J., Engel, T.. Se
urity monitoring for
ontent-
entri
 networking. In: Pietro, R.D., Herranz, J.,

Damiani, E., State, R., editors. DPM/SETOP; vol. 7731 of Le
ture Notes in Computer S
ien
e. Springer. ISBN 978-3-642-35889-0;

978-3-642-35890-6; 2012, p. 274�286.

8 S. Morigu
hi et al. / Pro
edia Computer S
ien
e 00 (2015) 000�000

3. Caro�glio, G., Gallo, M., Mus
ariello, L.. ICP: Design and evaluation of an interest
ontrol proto
ol for
ontent-
entri
 networking. In:

INFOCOM Workshops. IEEE. ISBN 978-1-4673-1016-1; 2012, p. 304�309.

4. Wang, A., Loo, B.T., Liu, C., Sokolsky, O., Basu, P.. A theorem proving approa
h towards de
larative networking. In: 22nd International

Conferen
e on Theorem Proving in Higher Order Logi
s (TPHOLs 2009). 2009.

5. Bhargavan, , Obradovi
, , Gunter, . Formal veri�
ation of standards for distan
e ve
tor routing proto
ols. Journal of the ACM 2002;49.

6. Clarke, E.M., Grumberg, O., Peled, D.A.. Model Che
king. Cambridge, Massa
husetts: The MIT Press; 1999. ISBN 0262032708.

7. Killian, C., Anderson, J.W., Jhala, R., Vahdat, A.. Life, death, and the
riti
al transition: Finding liveness bugs in systems
ode. In:

Pro
eedings of the 4th USENIX Symposium on Networked Systems Design & Implementation. 2007, p. 243�256.

8. Musuvathi, M., Engler, D.R.. Model-
he
king large network proto
ol implementations. In: First symposium on Networked Systems Design

and Implementation. 2004, p. 155�168.

9. Coq. The Coq proof assistant. http://
oq.inria.fr/; [Last a

ess: Mar
h 24, 2015℄

10. Gabbay, D.. The de
larative past and imperative future. In: Temporal logi
 in spe
i�
ation. Springer; 1989, p. 409�448.

11. Karsten, M., Keshav, S., Prasad, S., Beg, M.. An axiomati
 basis for
ommuni
ation. In: Pro
eedings of the 2007 Conferen
e on

Appli
ations, Te
hnologies, Ar
hite
tures, and Proto
ols for Computer Communi
ations; SIGCOMM '07. ACM. ISBN 978-1-59593-713-1;

2007, p. 217�228. doi:10.1145/1282380.1282405.

12. Felty, A.P., Howe, D.J., Stomp, F.A.. Proto
ol veri�
ation in nuprl. In: 10th International Computer Aided Veri�
ation Conferen
e. 1998,

p. 428�439.

13. Bharadwaj, R., Felty, A.P., Stomp, F.A.. Formalizing indu
tive proofs of network algorithms. In: Kan
hanasut, K., Levy, J.J., editors.

Algorithms, Con
urren
y and Knowledge: 1995 Asian Computing S
ien
e Conferen
e, ACSC '95; vol. 1023 of Le
ture Notes in Computer

S
ien
e (LNCS). Pathumthani, Thailand: Springer; 1995, p. 335�349.

14. Stewart, G.. Computational veri�
ation of network programs in
oq. In: Gonthier, G., Norrish, M., editors. Third International Conferen
e

on Certi�ed Programs and Proofs (CPP 2013); vol. 8307 of Le
ture Notes in Computer S
ien
e. Springer. ISBN 978-3-319-03544-4; 2013,

p. 33�49.

