
Available online at www.sienediret.om

Proedia Computer Siene 00 (2015) 000�000

www.elsevier.om/loate/proedia

10th International Conferene on Future Networks and Communiations, FNC-2015 and the 12th

International Conferene on Mobile Systems and Pervasive Computing, MobiSPC 2015

Formalization of the Behavior of Content-Centri Networking

Sosuke Moriguhi

a,�

, Takashi Morishima

a

, Mizuki Goto

a

, Kazuko Takahashi

a

a

Kwansei Gakuin University, 2-1, Gakuen, Sanda, 669-1337, JAPAN

Abstrat

Content-Centri Networking (CCN in short) is a ommuniation arhiteture whih is based on the name of ontents, rather than

on addresses. A protool used in CCN is not for End-to-End ommuniations, but for network-wide ommuniations. Eah node

sends pakets to onneting nodes, and these nodes ommuniate other nodes onneting with them. When data are sent, the

reeiving node stores it and forwarding other nodes. Suh stores inrease reliability of data and divide loads for servers. However,

the behaviors and performanes of the protool are under investigation. In this paper, we formalize the CCN protool using proof

assistant Coq. We reate two parts of formalization, the network module type and the behaviors of the protool. The network

module type has several parameters suh as an data type denoting nodes, onnetion relations between them, and some status

depending on CCN. Then we prove two spei�ations about ontent-deliveries in CCN. With a spei� network desription based

on the module type, we get the proofs of these spei�ations on the given network diretly. This result an be used to enhane the

reliability of CCN protools.

 2015 The Authors. Published by Elsevier B.V.

Peer-review under responsibility of the Conferene Program Chairs.

Keywords: Content-Centri Networking, Protool Veri�ation, Coq

1. Introdution

With the growing trend of loud omputing, users ommonly know only that their data exist somewhere in a

network; they tend to be interested only in fast and safe retrieval, and the loation of the data is unimportant. With

internet protool (IP), ommuniation is undertaken by assigning an address name to a server, i.e., where a ontent

is loated. When a user wants to aess some data, they make an aess request to the server and an aess the

ontent only if the request arrives at the server. However, the user typially does not are about the physial loation

of ontents, but rather is interested only in the ontent. The Content-Centri Network (CCN) was developed

1

as an

alternative network arhiteture that fouses not on �where� but on �what�. In CCN, ommuniation is undertaken

based on the name of the ontent, rather than the loation thereof. The fundamental idea of CCN is broadasting and

storing information embedded at eah node. End-to-end ommuniation is not required and the user an retrieve data

from a loser node by mathing with the stored information. As a result, the eÆieny and the reliability of network

an be inreased, and the response time an be redued. Although prototype implementations of this arhiteture

�

Corresponding author. Tel.: +81-79-565-8391.

E-mail address: higuri�am.org

1877-0509

 2015 The Authors. Published by Elsevier B.V.

Peer-review under responsibility of the Conferene Program Chairs.

2 S. Moriguhi et al. / Proedia Computer Siene 00 (2015) 000�000

have been developed, the tehnique is still under development. Many signi�ant issues remain, inluding seurity,

ongestion, and deadlok. For example, seurity vulnerabilities have been pointed out

2

, and a revised protool was

proposed to over the drawbaks of �ooding

3

. Corretness of the behavior has not been guaranteed, either.

It is diÆult to show behavioral orretness over a network, beause it requires heking all possible ases with

regards to the network topology, data struture, and timing of ommuniation. Corretness an be heked using

test and runtime veri�ation; however, it is not omplete. So far, in the development of network systems, emphasis

has been plaed on network performane, and strit orretness of the behavior has not been required. It has been

onsidered suÆient if ommuniations sueed at a high probability; even if it may fail or lok, whereupon timeout

and retry mehanisms an be used to solve the problem. However, a single error may result in a signi�ant failure

that is diÆult to reover from in a large, ompliated network. Therefore, it is onsiderably important to ertify the

orret behavior of protools.

Wang emphasized the importane of providing a sound network design, and proposed delarative networking and

protool veri�ation using a proof assistant

4

. Proof assistants represent a formal method to develop a erti�ed system.

There have been several reports of the formalization of network protools using proof assistants

5

, and primarily issues

with routing have been onsidered, without onsidering the ontents of pakets. On the other hand, as CCN does not

employ end-to-end ommuniation, we must desribe the treatment of the ontents of pakets as well as the routing.

An alternative formal method is model heking

6

, and there have been several reports of the use of model hekers

on veri�ation of network protools

7,8

. However, there exists a state explosion problem in model heking.

In this paper, we aim at formalizing CCN and showing behavioral orretness using the proof assistant Coq

9

.

In CCN, a node stores data on the nodes from whih messages are reeived, and so may ahe previously reeived

data. The node looks up the stored information and heks whether any mathing data exist. If this data mathing is

suessful, the node returns the ahed data to the requester. This mathing is arried out using the ontent name, and

the request does not always have to go to the server. We de�ne sending a paket and updating the stored information

as events, and reate an indutive model using a sequene of events. For behavioral orretness, we take the property

that a node an retrieve a ontent if and only if the user sends a request, when the ontent exists in the network.

There are several possible routes, beause a request may be sent to any node on whih ontents are ahed. We prove

orretness using indution on a sequene of events for all possible ases. These ases are tangled and diÆult to

hek exhaustively by hand. Coq will hek suh exhaustiveness mehanially and tell the rest of ases if exists. This

is the �rst attempt to give a formalization of CCN protool using a proof assistant.

We desribe temporal properties suh as eventuality and ausality using a sequene of events. This is a di�erent

approah from that typially employed in model heking, in whih the entire system is modeled as a state transition

system. We solve the problem of state explosion using an indution sheme with the proof assistant. Note that the

transition system does not onsider performane of the behaviors

1

.

The rest of this paper is organized as follows.

� We explain CCN in setion 2.

� In setion 3 and setion 4, we formalize a network and behaviors of the protool, respetively.

� Setion 5 shows two spei�ations for CCN and introdutions of their proofs.

� We show related work in setion 6 and summarize in setion 7.

In this paper, we explain formalization of CCN using Coq, but we will show very limited parts of sripts due to

a spae onstraint. You an see whole sripts of the formalization and proofs at https://github.om/higuri/

CCNprotool.

2. Content-Centri Networking

Here, we explain the CCN protool using an example. In reent network protools suh as HTTP, there are three

kinds of nodes, users sending requests, servers reeiving (and replying) requests, and rooters forwarding requests. In

1

Rigorously, the system is not runnable sine it is de�ned as prediates on a higher-order logi.

S. Moriguhi et al. / Proedia Computer Siene 00 (2015) 000�000 3

Fig. 1: Simple network with 7 nodes.

Table 1: FIBs in Fig. 1

Content-Name From To Content-Name From To

1 R1 R2 2 R1 R2

R2 S1 R2 R4

R3 S2

R4 R2 R4 S2

ontrast, in CCN, eah node an be a user, a rooter and/or a ontent-server. Here, we use these words for a requesting

node, a node forwarding pakets and a node retaining some ontents from the beginning, respetively. This setion is

basially the same with the original paper

1

, but we abstrat some onrete parts whih do not matter the formalization.

Assume that a network is shown in Fig. 1. There are a user U, rooters R1 to R4, and servers S1 and S2. We have

two ontents C1 and C2 in the network, stored in S1 and S2 respetively. C1 is named 1 and C2 is 2.

In the ase Uwants to aess C1, U sends interest pakets to all onneting nodes, R1 and R3, and waits data pakets.

Interest pakets ontain ontent-names suh as 1 and 2

2

, and data pakets ontain ontent-names and ontents. In

the CCN protool, we use only interest/data pakets to send and reeive requests/data.

R1 reeives an interest paket with 1, it heks it has C1 or not. If it does not have C1, then it heks its Forwarding

Information Base (FIB). FIB is a mapping from ontent-names to lists of nodes for forwarding interest pakets. Let

FIBs for the nodes be shown in Table 1. If there is no mapping from given ontent-names, interest pakets with them

are dropped. In this ase, R1 forwards the paket to R2. Also, R1 stores the node (U) from where the paket is sent in

its Pending Interest Table (PIT) . R3 also reeives the interest paket with 1, but its FIB does not have mapping from

1, thus R3 drops the paket.

After R2 forwarding an interest paket with 1 in the same manner, S1 reeives an interest paket with 1. In this

ase, S1 replies with a data paket ontaining C1 to R2 rather than forwarding the paket or dropping it.

When R2 reeives a data paket, it heks whether it already has a ontent. If it has, the paket is dropped. If it

does not have, it searhes PIT for the ontent. In this example, R2 has an entry for 1 (sent from R1), so R2 forwards

the paket to R1. At the same time, R2 stores the ontent. After storing the ontent, if R2 reeives interest pakets

with 1, it replies diretly with data pakets ontaining C1 as if it is a ontent-servers. When U reeives a data paket

ontaining C1, it stores the paket sine it requested the ontent.

In the ase U wants C2 (initially served by S2), there are two network path from U to S2 through FIBs, R3 to S2 and

R1, R2, R4 to S2. We annot deide from whih path U will reeive the ontent, and the both ases are valid in CCN.

2

In the original CCN protool, a ontent-name is in the path format suh as /foo/bar/musi.mp3. In this paper, we omit suh details.

4 S. Moriguhi et al. / Proedia Computer Siene 00 (2015) 000�000

3. Model of Networks

We divide formalization of the CCN protool to two parts; one is a network model and the other is a behavioral

model based on the network. This setion shows the network model, whose topology is parameterized.

The model has some parameters and assumptions for the topology. More spei�ally, parameters are about nodes,

onnetions, initial ontent-servers and FIB.

Node. First of all, all nodes should be identi�ed by a data type. We require all nodes an be distinguishable with eah

other.

Connetion. For eah node, all nodes onneting the node should enumerable as lists. We de�ne it as a funtion from

nodes to lists of nodes. Additionally, onnetions should be symmetri, i.e., if node n

1

onnets with node n

2

, then n

2

should onnet with n

1

also.

Initial Content-Server. Some nodes should have ontents initially. In the formalization, we require deidability

whether a node has a spei� ontent or not.

Forward Information Base. FIB is formalized as a funtion from node to node lists, like onnetions. Also, we require

that nodes in FIB should onnet, i.e., if node n

1

is in node n

2

's FIB list, then n

1

and n

2

should onnet eah other.

This feature fores forwarded pakets are transfered between onneting nodes. If a node does not have FIBs for a

ontent-name, the returned list for the node and the ontent-name should be empty.

. We have prediate over nodes and ontent-names, named FIBreahable, whih shows a given node is reahable

at some initial ontent-servers for a given ontent-name by traing FIB. This ensures that the node is aessible to the

data in the network.

If we de�ne the module denoting the network in Fig. 1, we may de�ne the nodes as an indutive data type in Coq.

Indutive Nodes : Set := | U | R1 | R2 | R3 | R4 | S1 | S2.

The following ode denotes onneted nodes for a given node.

Definition Conneted_list (v : Nodes) : list Nodes :=

math v with

| U => [R1; R3℄

| R1 => [U ; R2℄

| R2 => [R1; S1; R4℄

| R3 => [U ; S2℄

| R4 => [R2; S2℄

| S1 => [R2℄

| S2 => [R3; R4℄

end.

In the similar manner, we de�ne ontent-names (1 and 2) and FIBs for eah node.

Indutive Content_Names : Set := 1 | 2.

Definition FIB_list (v : Nodes) (: Content_Names) : list Nodes :=

math with

| 1 => math v with

| R1 => [R2℄

| R2 => [S1℄

| R4 => [R2℄

| _ => [℄

end

| 2 => math v with

| R1 => [R2℄

| R2 => [R4℄

| R3 => [S2℄

| R4 => [S2℄

| _ => [℄

end

end.

S. Moriguhi et al. / Proedia Computer Siene 00 (2015) 000�000 5

If FIB_list with a node and a ontent name returns an empty list, it means the node does not have any FIBs for the

ontent.

As we explained before, we have to prove some restritions about nodes, onnetion relations, et. However, in the

ase of the simple network, these restritions are straightforward and easy to prove. When we make a module named

CCN_SimpleNetwork ontaining the previous de�nitions, Coq heks whether required parameters are in the module.

If some restritions are not shown, Coq does not allow to de�ne the module.

4. Behaviors of Protools

In CCN, we an observe some ations and some pakets produed by ations. We say suh ations events hereafter.

An event is a request of a ontent (Request in the formalization), forwarding an interest paket (ForwardInterest),

adding a node into PIT (AddPIT), replying with a data paket (ReplyData), forwarding a data paket (ForwardData),

or storing a ontent in given data paket (StoreData).

We formalize the behaviors of a given network as a sequene of events and a list of pakets. They denote all

ourred events sorted in hronologial order and all sent but unproessed pakets, respetively. This means that the

formalization of the protool is onurrent rather than parallel. In this paper, we all a pair of the event sequene and

the paket list a snapshot.

There are no expliit PITs nor stored ontents in a snapshot, but we an alulate them from the event sequene

by piking up AddPIT and StoreData events. In every time we need them, we use funtions alulating them in the

formalization.

The behaviors of the protool are de�ned as follows. In any time, every node an request a ontent if it does not

have the ontent. Other behaviors are based on the snapshot.

� If there exists an unproessed interest paket, and a node has a requested ontent, then it replies with a data

paket ontaining the ontent.

� If there exists an unproessed interest paket, but no FIB is available for a ontent-name ontained in the paket,

then a node drops the paket.

� If there exists an unproessed interest paket, but no PIT entries for a ontent-name ontained in the paket,

then a node forwards the paket to nodes in FIB and add an PIT entry.

� If there exist an unproessed interest paket and PIT entries for a ontent-name ontained in the paket, then a

node adds an PIT entry but does not forward the paket.

� If there exists an unproessed data paket, but a node has a orresponding ontent, then it drops the paket.

� If there exist an unproessed data paket and PIT entries for a orresponding ontent-name, then it stores the

ontent and forwarding the paket.

� If there exists an unproessed data paket and a node requested a orresponding ontent, then it stores the

ontent.

� If there exists an unproessed data paket, but a node did not request a orresponding ontent and there are no

PIT entries for the ontent-name, then it drops the ontent.

These unproessed pakets are seleted nondeterministially. We do not restrit orders of proessing pakets. This

means that the behaviors are ompletely asynhronous.

In Coq, we de�ne an indutive prediate that a snapshot omplies with the CCN protool as CCNprotool. The

prediate is satis�ed with an initial state whih is an empty event sequene and an empty list, and a snapshot generated

by the behavior desribed above from another snapshot satisfying CCNprotool. Sine CCNprotool is an indutive

prediate, we an proof by indution on the behaviors if a given snapshot omplies with the protool.

5. Spei�ations and Proofs

We prove two spei�ations for the CCN protool as behavioral orretness. One is similar to eventuality of

ontent-delivers, and the other is ausality of arrivals of the ontents. We all the former forward lemma and the latter

6 S. Moriguhi et al. / Proedia Computer Siene 00 (2015) 000�000

bakward lemma. Before proving them, we show any pakets in snapshots omplying with the CCN protool are sent

between onneting nodes.

Proofs for the forward/bakward lemma are onstruted on parameters desribing networks, but not on imple-

mentations of networks. We an get proofs for forward/bakward lemmas by applying the proof module, named

CCN_Protool_Verifiation to the network module desribing a network you intend. In other words, we prove for-

ward/bakward lemmas of the CCN protool in any networks we an desribe in Coq, e.g. �xed number of nodes or

unbound number of nodes with indutive topologies. For example, for the simple network desribed in setion 3, the

proofs are de�ned with the following ommand.

Module CCN_SimpleNetwork _Verifiation := CCN_Protool_Verifiation CCN_SimpleNetwork .

Import CCN_SimpleNetwork _Verifiation .

Networks with �xed number of nodes are very easy to desribe in Coq sine we an enumerate the nodes as

indutive data types. We also de�ne networks for unbound number of nodes on�gurating half line and binary tree.

5.1. Forward

If we have requested some ontents, we expet that we eventually get ontents. However, without strong restri-

tions, we annot prove suh eventuality.

Sine eah node behaves onurrently, there is an event sequene suh that some nodes send interest pakets

easelessly. In the ase, requests from others may be abandoned and never proessed. This is not aused by the

formalization sine in general we annot assure that any requests will be proessed properly.

To avoid suh problems, we de�ne the spei�ation of forward lemma as follows.

Theorem CCN_Forward_Request :

forall (v : Node) (: Content_Name) (es : list Event) (ps : list Paket),

(exists v' : Node, Conneted v v' /\ FIBreahable v') ->

CCNprotool (Request v :: es) ps ->

forall (es' : list Event) (ps' : list Paket),

CCNprotool (es' ++ Request v :: es) ps' ->

(exists C : Content ,

In (StoreData v C) (es' ++ Request v :: es))

\/ (exists (C : Content) (es'' : list Event) (ps'' : list Paket),

CCNprotool (StoreData v C :: es'' ++ es' ++ Request v :: es) ps'').

The spei�ation says that, after a node requests ontents, the network snapshot is always under following states:

1. the node already reeived the ontent (i.e., StoreData is in the event sequene), or

2. the node may reeive the ontent after some times.

We split the spei�ation into two parts, one is for users requesting ontents, and the other is for rooters forwarding

interest pakets. The spei�ation for users is the same as the above exept that Requests are ForwardInterests.

First we prove the spei�ation for rooters and then that for users. The proof for rooters is done by indution on

the FIBreahable prediate and ase analysis for the snapshots. It is about 140 lines of odes to prove, and lemmas

proved by around 1000 lines of odes. The proof for users uses ase analysis and the previous spei�ation. It is also

about 140 lines of odes. Sine the ase analysis is very omplex, without proof assistant, we might miss some ases.

5.2. Bakward

The bakward lemma says that if a node reeives data pakets, then it sent interest pakets (as forwarding pakets

or requesting ontents) before it reeives. This kind of ausality is possible to desribe diretly with past-time opera-

tors

10

. Suh operators are known to be desribable with usual temporal logi suh as CTL and LTL, but it is far from

suint nor intuitive

6

. In ontrast, we an desribe it without any extra operators.

Theorem CCN_Bakward :

forall (v : Node) (: Content_Name) (C : Content) (es : list Event)

(ps : list Paket),

S. Moriguhi et al. / Proedia Computer Siene 00 (2015) 000�000 7

CCNprotool (StoreData v C :: es) ps ->

In (Request v) es \/ In (ForwardInterest v) es.

The proof is done by indution on the protool behaviors. It is about 10 lines of (small automated) odes to prove,

and one lemma (3 lines to prove).

6. Related Work

The formalization of behavioral orretness of a network protool, suh as routing, forwarding, and addressing,

has also been well studied. Karsten et al. showed meta-level axiomatization for forwarding using Hoare-style logi

11

.

However, their proof was arried out using a pen-and-paper approah. Felty et al. desribed a salable oherent

interfae (SCI) ahe oherene protool using Nurpl

12

. Bharadwaj et al. gave an indutive formalization for routing

algorithms and proved their orretness using Coq and the model heker SPIN

13

. Bhargavan et al. formalized an

ad-ho network protool and proved its behavioral orretness using HOL and SPIN

5

. Stewart showed a veri�ation

of delarative network programs using Coq

14

.

In most of these previous reports, the authors foused on the orretness of routing. However, here we fous on the

ontent of pakets, beause CCN employs ontent-based ommuniation.

An alternative approah to proving behavioral orretness is the use of a model heker

6

. The required spei�ation

an be represented using temporal logi, beause there are `always' and `eventuality' operators. There have been a

number of attempts to verify networks using model hekers

7,8

. Reahability and memory leak were analyzed in

these works. However, their main goal was bug detetion, whereas our goal is to give a proof of the orretness of

the behavior of the network. Moreover, there exists a state explosion problem in model heking, whereas this an be

avoided through the use of indution via a proof assistant. Also, we have parameterized network topologies, but it is

hard to represent in model heking.

We have formalized the ausality of events in a proliferating sequene of events in both the forward and bakward

diretions. It follows that we an speify the property �if users send a message in any situation, then they eventually

reeive the orresponding answer� and �if users reeive a message, then they sent the orresponding request� without

expressing a time expliitly.

7. Conlusion

We formalized the CCN protool using proof assistant Coq. We reated an indutive model using a sequene of

events and showed forward validity and bakward validity. Although we used Coq, this method an be applied using

many other proof assistants.

The main ontributions of this work are twofold: (1) This represents the �rst attempt to give a formalization of a

CCN protool using a proof assistant. This an signi�antly enhane the reliability of a CCN protool. (2) We have

shown the formalization of ausality of events in a proliferating sequene of events, in both the forward and bakward

diretions. This represents an extension of the appliation areas of proof assistants.

In the future, we plan to extend the protool with limiting a number of ontents stored in a node. We believe

suh limitations do not break the spei�ations proven in this paper. In ontrast, we already know that limitations of

numbers of PITs break the forward-spei�ation beause a request may drop out of PITs. To keep the spei�ation,

we need other funtions suh as resending requests. Sine they are not protool requirements, we should disuss

whih funtions are better for the protool.

Referenes

1. Jaobson, V., Smetters, D.K., Thornton, J.D., Plass, M.F., Briggs, N.H., Braynard, R.L.. Networking named ontent. In: Proeedings of

the 5th International Conferene on Emerging Networking Experiments and Tehnologies; CoNEXT '09. New York, NY, USA: ACM. ISBN

978-1-60558-636-6; 2009, p. 1�12. doi:10.1145/1658939.1658941.

2. Goergen, D., Cholez, T., Fraņois, J., Engel, T.. Seurity monitoring for ontent-entri networking. In: Pietro, R.D., Herranz, J.,

Damiani, E., State, R., editors. DPM/SETOP; vol. 7731 of Leture Notes in Computer Siene. Springer. ISBN 978-3-642-35889-0;

978-3-642-35890-6; 2012, p. 274�286.

8 S. Moriguhi et al. / Proedia Computer Siene 00 (2015) 000�000

3. Caro�glio, G., Gallo, M., Musariello, L.. ICP: Design and evaluation of an interest ontrol protool for ontent-entri networking. In:

INFOCOM Workshops. IEEE. ISBN 978-1-4673-1016-1; 2012, p. 304�309.

4. Wang, A., Loo, B.T., Liu, C., Sokolsky, O., Basu, P.. A theorem proving approah towards delarative networking. In: 22nd International

Conferene on Theorem Proving in Higher Order Logis (TPHOLs 2009). 2009.

5. Bhargavan, , Obradovi, , Gunter, . Formal veri�ation of standards for distane vetor routing protools. Journal of the ACM 2002;49.

6. Clarke, E.M., Grumberg, O., Peled, D.A.. Model Cheking. Cambridge, Massahusetts: The MIT Press; 1999. ISBN 0262032708.

7. Killian, C., Anderson, J.W., Jhala, R., Vahdat, A.. Life, death, and the ritial transition: Finding liveness bugs in systems ode. In:

Proeedings of the 4th USENIX Symposium on Networked Systems Design & Implementation. 2007, p. 243�256.

8. Musuvathi, M., Engler, D.R.. Model-heking large network protool implementations. In: First symposium on Networked Systems Design

and Implementation. 2004, p. 155�168.

9. Coq. The Coq proof assistant. http://oq.inria.fr/; [Last aess: Marh 24, 2015℄

10. Gabbay, D.. The delarative past and imperative future. In: Temporal logi in spei�ation. Springer; 1989, p. 409�448.

11. Karsten, M., Keshav, S., Prasad, S., Beg, M.. An axiomati basis for ommuniation. In: Proeedings of the 2007 Conferene on

Appliations, Tehnologies, Arhitetures, and Protools for Computer Communiations; SIGCOMM '07. ACM. ISBN 978-1-59593-713-1;

2007, p. 217�228. doi:10.1145/1282380.1282405.

12. Felty, A.P., Howe, D.J., Stomp, F.A.. Protool veri�ation in nuprl. In: 10th International Computer Aided Veri�ation Conferene. 1998,

p. 428�439.

13. Bharadwaj, R., Felty, A.P., Stomp, F.A.. Formalizing indutive proofs of network algorithms. In: Kanhanasut, K., Levy, J.J., editors.

Algorithms, Conurreny and Knowledge: 1995 Asian Computing Siene Conferene, ACSC '95; vol. 1023 of Leture Notes in Computer

Siene (LNCS). Pathumthani, Thailand: Springer; 1995, p. 335�349.

14. Stewart, G.. Computational veri�ation of network programs in oq. In: Gonthier, G., Norrish, M., editors. Third International Conferene

on Certi�ed Programs and Proofs (CPP 2013); vol. 8307 of Leture Notes in Computer Siene. Springer. ISBN 978-3-319-03544-4; 2013,

p. 33�49.

