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Abstract. This paper presents strategies and conditions for non-failing
persuasion using a dialogue model using argumentation. A novel con-
cept of the predicted knowledge of the other agent participating in the
dialogue is introduced. In the dialogue model, an agent’s knowledge is
updated as the dialogue proceeds; an argumentation framework is con-
structed from the current knowledge; and only the content of an accept-
able argument can be offered as the next move. In this paper, a modified
dialogue model is proposed in which the next move is determined using
predicted knowledge and a strategy that navigates a non-failing per-
suasive argumentation is presented. Conditions under which persuasion
never fails using this strategy when the prediction is equivalent to the
actual knowledge of an opponent are described. Moreover, what the pre-
dicted knowledge should contain for non-failing persuasion are discussed.
The introduction of predicted knowledge improves the formulation of real
dialogue.

Keywords: argumentation, persuasion, dialogue, predicted knowledge
base

1 Introduction

To achieve agreement during a dialogue between agents, it is important to resolve
existing conflicts by exchanging protocols; persuasion is one dialogue type that
has such characteristics. Each agent participating in a dialogue has their own
knowledge, which changes as the dialogue proceeds. If dialogue is regarded as a
game, then each agent is a player who determines their next move by considering
the effect of the move based on a dialogue protocol. The agent’s knowledge is
updated with the utterance of an opponent, which may add knowledge that
is inconsistent with their current belief. As an argumentation framework can
handle inconsistency or non-monotonicity of knowledge bases, it is useful for
creating a dialogue model.

Amgoud et al. proposed a dialogue model using argumentation [2]. In their
model, an agent’s knowledge is updated as the dialogue proceeds; an argumenta-
tion framework is constructed from the current knowledge, and only the content
of an acceptable argument can be asserted as the agent’s beliefs. This approach



models argumentative agents who behave rationally; however, it lacks the view-
point of predicting the opponent’s inner states. On the other hand, in an actual
dialogue, especially in the case of persuasion, we usually predict the opponent’s
knowledge or beliefs and create a strategy to succeed in persuasion.

Consider the following situation of students selecting their research labora-
tory. Alice and Bob want to apply to the same laboratory. Alice, who prefers a
strict professor’s laboratory, wants to apply to Charlie’s laboratory. She knows
that Charlie is generous as well as strict. On the other hand, Bob wants to ap-
ply to a generous professor’s laboratory, but does not want to apply to a strict
professor’s laboratory. Bob does not know about the reputation of Charlie. In
this example, if Alice has no idea about Bob’s knowledge, then she may first
say, “Let’s apply to Charlie’s laboratory because he is strict,” which will fail to
persuade Bob to accept Alice’s proposal. However, if she knows that Bob does
not like strict professors, then she could say, “Let’s apply to Charlie’s laboratory
because he is generous,” which will successfully persuade Bob to accept the pro-
posal. This choice of utterance is based on the key knowledge that Bob does not
want to apply to a strict professor’s laboratory and on Alice having the correct
key knowledge as her prediction.

In this paper, we revisit the dialogue model proposed by Amgoud et al.
and enhance it to lead to non-failing persuasion by creating a strategy based
on predicted knowledge. We propose a dialogue model in which each agent has
predicted knowledge of their opponent as well as their own knowledge. In this
strategy, an agent does not present an argument that s/he predicts will lead the
opponent to refuse the proposal, and positively presents an argument that s/he
predicts will lead the opponent to accept it. These decisions are made using an
argumentation framework constructed from predicted knowledge.

We investigate the conditions under which persuasion succeeds, or at least
does not fail using this strategy, when a prediction is equivalent to the actual
knowledge of an opponent. Moreover, we discuss what the predicted knowledge
should contain for persuasion not to fail.

This dialogue model using predicted knowledge, improves the formulation of
real dialogue and can be extended to handle dialogues including a lie.

The rest of the paper is organized as follows. Section 2 describes the ar-
gumentation framework on which our model is based. Section 3 formalizes our
dialogue model and proposes a persuasion strategy. Section 4 gives an example
of a persuasive dialogue. Section 5, discusses the properties of this strategy. Sec-
tion 6 compares our approach with other approaches. Finally, Section 7 presents
our conclusions.

2 Argumentation Framework

Dung’s abstract argumentation framework is defined as a pair of a set and a
binary relation on the set [5]. We instantiate each argument by a set of formulas
generated from a given knowledge base. In addition, preference is introduced to
give relative strength to arguments.



Definition 1 (argument). Let Σ be a set of propositional formulas, called
knowledge base. Σ may be inconsistent and not deductively closed. An argument
on Σ is defined as a pair of support H and a conclusion h, (H,h), where either
of the following conditions are satisfied: (i) H = ∅ and h ∈ Σ, or (ii) H is a
consistent minimal subset of Σ in the sense of set inclusion, H ⊢ h, and ∀h′ ∈ H;
h′ ̸≡ h where ≡ represents logical equivalence.

For an argument A = (H,h), supp(A) and concl(A) denote H and h, respec-
tively. fml(A) denotes a set of formulas in A, that is, fml(A) = H ∪ {h}. For a
set of arguments Arg, Fml(Arg) denotes ∪A∈Argfml(A).

In an argumentation framework for a persuasive dialogue, it is often necessary
to give relative strength to arguments to determine which formula is acceptable
[1, 4, 7]. Similar to existing approaches, we define an argumentation framework
with preferences.

The strength of each formula is assigned in advance, such that a higher level
is more strong than a lower one. As a result, Σ is partially ordered with re-
spect to strength. The preference of an argument is calculated depending on
this strength, such that it depends on the least strong formula included in sup-
port of an argument. We do not discuss how to assign strength here, since it is
out of the focus of this paper.

Definition 2 (preference). Let Σ be a set of formulas and str be a function
from Σ to a set of natural numbers. For each argument A, generated from Σ,
Pref(A) is defined as minF∈supp(A)str(F ) if supp(A) ̸= ∅, and str(concl(A)) if
supp(A) = ∅.

Let A1 and A2 be arguments. If Pref(A2) ≤ Pref(A1), it is said that A1 is
preferable to A2, and denoted by A2 ⪯ A1.

Definition 3 (attack). For a pair of arguments A1 = (H1, h1) and A2 =
(H2, h2), if h2 ≡ ¬h1, then it is said that A2 rebuts A1 ; if there exists h ∈ H1

such that h2 ≡ ¬h, then it is said that A2 undercuts A1; A2 either rebuts or
undercuts A1 and A1 ⪯ A2, then it is said that A2 attacks A1.

Definition 4 (argumentation framework). An argumentation framework
for a knowledge base Σ under strength str, denoted by AF (Σ, str), is defined
as a pair ⟨AR,AT ⟩ where AR is a set of arguments generated from Σ and AT
is a set of attacks on AR based on str. If str is fixed throughout the discussion,
then we denote AF (Σ) in the form where str is omitted.

Definition 5 (acceptable). Let AF = ⟨AR,AT ⟩ be an augmentation frame-
work. For a set of arguments S ⊆ AR and an argument A1, for any argument
A2 ∈ AR that attacks A1, there exists an argument A3 ∈ S that attacks A2; it
is said that A1 is acceptable with respect to S.

Definition 6 (grounded extention). Let AF = ⟨AR,AT ⟩ be an argumenta-
tion framework. For a set of arguments S ⊆ AR, let F be a function:

F (S) = { A ∈ AR | A is acceptable with respect to S }.
Let S′ be the least fixedpoint of F . Then S′ is said to be a grounded extension,
and denoted by Ext(AF).



Note that there exists a unique grounded extension for any argumentation
framework [5]. Hereafter, we use the term “extension” to mean a grounded ex-
tension, unless there is any confusion.

In addition to these well-known concepts, a few more new concepts are de-
fined.

Definition 7 (belief). Let AF be an argumentation framework. A set of for-
mulas appearing in arguments in the extension is said to be a belief of AF , that
is, Bel(AF) = {fml(A)|A ∈ Ext(AF)}.

Definition 8 (not-being-attacked-argument). Let AF = ⟨AR,AT ⟩ be an
argumentation framework. For an argument A1 ∈ AR, if there does not exist an
argument A2 ∈ AR that attacks A1, then A1 is said to be not-being-attacked-
argument of AF , NBA-argument in short.

3 Dialogue Model

3.1 Dialogue model based on an argumentation

Amgoud et al. proposed a dialogue model based on an argumentation [2]. An
agent’s knowledge and belief were distinguished by setting them as formulas in a
knowledge base, and in an extension of an argumentation framework constructed
from the knowledge base, respectively. We modify this model by introducing a
predicted knowledge base.

A dialogue is a sequence of utterances by agents along the protocol. Each
agent constructs an argumentation framework from an initial knowledge base and
the set of formulas provided so far. When an opponent makes an utterance, and
new formulas are provided, then the argumentation framework is revised. First,
s/he calculates an extension of the argumentation framework, that represents
a consistent set of formulas that she currently believes. These are the formulas
allowed for use as the next utterance. Next, s/he selects the best move from
these allowed moves using a predicted knowledge base of an opponent.

Consider a dialogue between X and Y . Let ΣX and ΣY be the agents’ initial
knowledge bases; ΠY and ΠX be Y ’s knowledge base on X’s prediction and X’s
knowledge base on Y ’s prediction, respectively. That is, X has two knowledge
bases ΣX and ΠY , and Y has ΣY and ΠX . It is usually assumed that common
sense or widely prevalent facts on the subject are also known by the opponent.
On the other hand, there is knowledge that only the opponent knows, or that
the agent is not sure that the opponent knows. Therefore, we assume that the
predicted knowledge base is a subset of the opponent’s real knowledge base, that
is, ΠX ⊆ ΣX and ΠY ⊆ ΣY .

We consider acts of an agent, which are defined by modifying the acts pro-
vided by Walton et al. [14].

Definition 9 (act). An act is either assert(p), assert(S, p), assertS(S, p),
challenge(p) or ignore, where p is a formula and S is a set of formulas.



An act assert is asserting the statement with or without its ground, and
an act assertS is asserting the ground itself. An act challenge is asking the
reason for the assertion. An act ignore is passing on the turn, without giving
any information.

Let T be an act. We define the function formula from a set of acts to a set
of formulas.

formula(T ) =


{p} if T = assert(p)
{p} ∪ S if T = assert(S, p)
S if T = assertS(S, p)
∅ otherwise

Definition 10 (move). A move is a pair of (X,T ), where X is an agent, and
T is an act.

Definition 11 (dialogue). A dialogue dk between a persuader X and their
opponent Y on a subject ρ is a finite sequence of moves [m0, . . . ,mk−1] where
each mi (0 ≤ i ≤ k − 1) is in the form of (Xi, Ti) and the following conditions
are satisfied:

(i) X0 = X and T0 is either assert(ρ) or assert(S, ρ).
(ii) For each i (0 ≤ i ≤ k − 1), Xi = X if i is even, Xi = Y if i is odd.
(iii) For each i (0 ≤ i ≤ k − 1), mi is one of allowed moves.

An allowed move is a move that obeys a dialogue protocol which is defined
later.

Definition 12 (complete dialogue). For a dialogue [m0, . . . ,mk−1] between
a persuader X and its opponent Y on a subject ρ, if mk−2 = (X, ignore) and
mk−1 = (Y, ignore), or if mk−2 = (Y, ignore) and mk−1 = (X, ignore), then it
is said to be a complete dialogue.

As a dialogue proceeds, formulas in each agent’s knowledge base are disclosed.
An agent’s commitment store is a set of formulas which s/he has provided so
far.

Definition 13 (commitment store). For a dialogue dk = [m0, . . . ,mk−1]
where each mi (i = 0, . . . , k − 1) is in the form of (Xi, Ti),
X’s commitment store for dk , which is denoted by CSdk

X , is defined as ∅ if
k = 0, and ∪i=0,...,k−1,Xi=Xformula(Ti) if k ̸= 0.

Definition 14 (argumentation framework for a dialogue). For a dialogue
dk = [m0, . . . ,mk−1], an argumentation framework of agent X for dk is defined
as AF (ΣX∪CSdk

Y ), which is denoted by AFdk

X . A predicted argumentation frame-

work of agent Y by X for dk is defined as AF (ΠY ∪ CSdk

X ∪ CSdk

Y ), which is

denoted by PAFdk

Y .

A dialogue protocol is a set of rules for each act. For example, assertS(S, p) is
allowed if an agent has asserted p but not asserted S as its ground, challenge(p)



is allowed if p has been asserted by the opponent but its support has not. An
agent is basically allowed to assert a proposition contained in the extension of the
current argumentation framework, and not allowed to give a repetitive assertion.
An allowed move is a move that obeys the rules.

Definition 15 (allowed move). Let X,Y be agents, and dk = [m0, . . . ,mk−1]
be a dialogue. The preconditions of each act of agent X for dk are formalized as
follows. If a move mk satisfies the precondition, then mk is said to be an allowed
move for dk.

– assert(p):
• if k = 0 and ∃A ∈ Ext(AFdk

X ); p = concl(A).

• if k ̸= 0 and ¬p ∈ CSdk

Y and ∃A ∈ Ext(AFdk

X ); p = concl(A).
– assert(S, p):

• if k = 0 and ∃A ∈ Ext(AFdk

X ); p = concl(A), S = supp(A).

• if k ̸= 0 and ¬p ∈ CSdk

Y and (X, assert(p)) ̸= mi (0 ≤ i ≤ k − 1) and

∃A ∈ Ext(AFdk

X ); p = concl(A), S = supp(A).

– assertS(S, p): if p ∈ CSdk

X , (X, assert(S, p)) ̸= mi (0 ≤ i ≤ k − 1) and

∃A ∈ Ext(AFdk

X ); S = supp(A), p = concl(A).

– challenge(p): if p ∈ CSdk

Y and (X, assert(S, p)), (X, assertS(S, p)) ̸= mi

(0 ≤ i ≤ k − 1).
– ignore: if k ̸= 0.

There are two additional preconditions for mk:

– for every act: if not both of the acts of mk−2 and mk−1 are ignore.
– for an act other than ignore: if mk ̸= mi (0 ≤ i ≤ k − 1).

After the move mk = (X,T ), the following updates are undertaken: dk+1 is

obtained from dk by adding (X,T ) to its end, CS
dk+1

X = CSdk

X ∪ formula(T )

and CS
dk+1

Y = CSdk

Y .

Definition 16 (win/lose). For a complete dialogue dk between a persuader X
and their opponent Y on a subject ρ, the dialogue is said to be win by X if
ρ ∈ Bel(AFdk

Y ), strongly win by X if ρ ∈ Bel(AFdk

X )∩Bel(AFdk

Y ), and lost by

X if ¬ρ ∈ Bel(AFdk

Y ).

Definition 17 (dialogue tree). A dialogue tree between X and Y on ρ is a
finite tree of which each node corresponds to a dialogue, and constructed in the
following manner.

1. The root node corresponds to ϵ.
2. For a node N corresponds to dialogue di = [m0, . . . ,mi−1],

(a) if the act of mi−2 and that of mi−1 are both ignore, N has no child node;
(b) otherwise, its child nodes N1 . . . , Nl are the nodes corresponding to [m0, . . . ,

mi−1,mij ] (1 ≤ j ≤ l), respectively, where {mi1 . . .mil} are the set of
all allowed moves at N .



A dialogue tree is a finite tree of which each branch is a complete dialogue,
and in which the depth of a node corresponding to dialogue dk is k. It surveys
all possible dialogues between X and Y on ρ. Therefore, different branches may
include the same move whereas a single branch never includes the same move
except that of which an act is ignore.

Definition 18 (failure tree). Let Tr be a subtree of a dialogue tree. If all
branches of Tr are subsequences of dialogues lost by X, then Tr is said to be a
failure tree.

Definition 19 (fatal move). For a dialogue tree, let N be a node from which
outgoing edges are X’s moves and N1, . . . , Nl be its child nodes. If there exists
Ni (1 ≤ i ≤ l) that is a root node of a failure tree, and there exists Nj (1 ≤ j ≤ l)
that is not a root node of a failure tree, then the move from N to Ni is said to
be X’s fatal move at N .

Once a fatal move is taken, there is no possibility of X’s winning a dialogue
whatever move s/he makes afterwards. Therefore, strategy should be constructed
in such a way that makes X avoid selecting a fatal move.

3.2 Strategy

Strategy is a function that returns a move from a set of allowed moves.

Definition 20 (never lose). Let S be an arbitrary strategy. If X does not lose
in all possible dialogues between X and Y on ρ taken by S, then it is said that
X never loses by S.

We propose a strategy SNF . This strategy is based on the principle that an
agent will not make a risky move. An agent avoids making a move that causes
her opponent to believe ¬ρ, whereas s/he positively makes a move that causes
her opponent to believe ρ. S/he gives no more information if the goal is satisfied.

Strategy SNF :
Let AFdk

X and PAFdk

Y be an argumentation framework of X for dk and a
predicted argumentation framework of Y by X for dk, respectively. Then the
move mk = (X,T ) is selected by the following rules.

1. If ρ ∈ Bel(AFdk

X ) ∩Bel(PAFdk

Y ), then (X, ignore) is selected.
2. The following rule (i) prior to rule (ii).

(i) If ¬ρ ∈ Bel(PAFdk+1

Y ), then (X,T ) is not selected.

(ii) If ρ ∈ Bel(PAFdk+1

Y ), then (X,T ) is selected.
3. The descending order of priority on taking actions is assert(q), assert(S, q),

assertS(S, q), challenge(p) and ignore, that is, assert(q) has the highest
priority.

If multiple moves that satisfy all of the above rules exist, then one of them
is selected nondeterministically.



4 Example

We show the formalization of the example of selecting a laboratory discussed in
Section 1. Let a, g and s represent propositions that applying to Charlie’s labo-
ratory, Charlie is generous, and Charlie is strict, respectively. In this dialogue, X
(Alice) tries to persuade Y (Bob) to believe a (to apply to Charlie’s laboratory).

Assume that the strength of the formulas are given as follows: str(g) =
str(s) = str(s → ¬a) = 3, str(g → a) = str(s → a) = 2 and str(a) =
str(¬a) = 1. We show the case in which the predicted knowledge base of Y by
X is equivalent to Y ’s actual knowledge base, that is, ΠY = ΣY . Assume that
knowledge bases are given as follows.

ΣX = {g, s, g → a, s → a, a} ΠX = {g → a}
ΣY = {g → a, s → ¬a,¬a} ΠY = {g → a, s → ¬a,¬a}

Below we show relevant arguments from given knowledge bases. The number
attached to each argument is its preference. More arguments can be constructed,
but most of them do not affect the calculation of extension.

A1 = (∅, g)[3] A6 = (∅, a)[1]
A2 = (∅, s)[3] A7 = (∅,¬a)[1]
A3 = ({s, s → ¬a},¬a)[3] A8 = ({g → a,¬a},¬g)[1]
A4 = ({g, g → a}, a)[2] A9 = ({s → a,¬a},¬s)[1]
A5 = ({s, s → a}, a)[2] A10 = ({s → ¬a, a},¬s)[1]

We show three possible dialogues in Table 1.

Let PAFdk+1

Y = ⟨PAR
dk+1

Y , PAT
dk+1

Y ⟩ be a predicted argumentation frame-
work of Y by X for dk+1, that is, obtained as a result of the move mk in a

dialogue dk+1 = [m0, . . . ,mk]. Here, PAR
dk+1

Y = AF (ΠY ∪ CS
dk+1

X ∪ CS
dk+1

Y ).

In these dialogues, CSdi

Y is ∅ for any i (0 ≤ i ≤ k+1). Thus, important transitions

PAR
dk+1

Y , Ext(PAFdk+1

Y ) and CS
dk+1

X are shown in the table, and the graph rep-

resentation corresponding to PAFdk+1

Y in each state is shown in Figure 1(a)∼(e).
In the figure, nodes represent arguments and edges represent attacks.

Initially, there is no attack, PAFd0

Y = {A7, A8}, Ext(PAF0
Y ) = {A7, A8},

and CSd0

X = ∅ hold, represented in a graph AF1 (Figure 1(a)). There are three
allowed moves at the initial state. That is, X can give three acts: assert(a),
assertS({g, g → a}, a) or assertS({s, s → a}, a).

Dialogue1 shows the dialogue along the strategy SNF . X first gives
assertS({g, g → a}, a) from the rule 2(i) and 2(ii) (Figure 1(c)). In this case, a ∈
fml(A4) ⊆ Bel(PAFd1

Y ). Next, Y can provide only challenge(g), challenge(g →
a) or ignore. The case in which challenge(g) is given is shown in the table. X
gives ignore along the strategy SNF against Y ’s move. X continues to give
ignore afterwards and finally wins. In the event Y gives ignore at any move, the
result is the same.

If X does not have a strategy, it may make either one of three moves at
the initial state. Dialogue2 and Dialogue3 are the ones X gives assert(a) first



Dialogue1:

move mk PAR
dk+1

Y Ext(PAFdk+1

Y ) CS
dk+1

X graph

m0: (X, assertS({g, g → a}, a) {A7, A8, A6, A10, {A1, A4, A6, A10}, {a, g, g → a} AF3
m1: (Y, challenge(g)) A1, A4}
m2: (X, ignore)
m3: (Y, challenge(g → a))
m4: (X, ignore)
m5: (Y, ignore)

Dialogue2:

move mk PAR
dk+1

Y Ext(PAFdk+1

Y ) CS
dk+1

X graph

m0: (X, assert(a)) {A7, A8, A6, A10} ∅ {a} AF2
m1: (Y, challenge(a))

m2: (X, assertS({g, g → a}, a) {A7, A8, A6, A10, {A1, A4, A6, A10} {a, g, g → a} AF3
m3: (Y, challenge(g)) A1, A4}
m4: (X, ignore)
m5: (Y, challenge(g → a))
m6: (X, ignore)
m7: (Y, ignore)

Dialogue3:

move mk PAR
dk+1

Y Ext(PAFdk+1

Y ) CS
dk+1

X graph

m0: (X, assert(a)) {A7, A8, A6, A10} ∅ {a} AF2
m1: (Y, challenge(a))

m2: (X, assertS({s, s → a}, a) {A7, A8, A6, A10, {A2, A3 {a, s, s → a} AF4
m3: (Y, challenge(s)) A2, A5, A3, A9} A7, A8}
m4: (X, assertS({g, g → a}, a) {A7, A8, A6, A10, {A1, A2 {a, g, s, AF5

A2, A5, A3, A9, A1, A4} A3, A7} g → a, s → a}
Table 1. Transitions of argumentation frameworks.

(Figure 1(b)). Next, Y can provide only challenge(a) except for ignore. Next, X
can give either of (assertS({g, g → a}, a) or assertS({s, s → a}, a). If X gives
the former one (Figure 1(c)), a ∈ fml(A4) ⊆ Bel(PAFd3

Y ) holds. Dialogue2
shows this case. After that, if X gives ignore, s/he finally wins. On the other
hand, if X gives the latter one (Figure 1(d)), ¬a ∈ fml(A3) ⊆ Bel(PAFd3

Y )
holds. Dialogue3 shows this case. Even if X gives assert({g, g → a}, a) after-
wards (Figure 1(e)), ¬a ∈ fml(A3) ⊆ Bel(PAFd5

Y ) holds, and X loses. In the
event Y gives ignore at any move, the result is the same.

In this example, assertS(a, {s, s → a}) is a fatal move.

5 Properties

In this section, we discuss some properties of our model and what formulas should
be included in a predicted knowledge base. All proofs are shown in Appendix.

Note that hereafter Ni denotes a node in the depth i in a dialogue tree.

Lemma 1. For a failure tree of which the root is Ni corresponding to a dialogue
di, ¬ρ ∈ Bel(AFdi

Y ) holds.



(a) AF1: initial state

(b) AF2: after (X, assert(a)) in Dialogue2 and Dialogue3

(c) AF3: after (X, assertS({g, g → a}, a) in Dialogue1 and Dialogu2

(d) AF4: after (X, assertS({s, s → a}, a) in Dialogue3

(e) AF5: after (X, assertS({g, g → a}, a) in Dialogue3

Fig. 1. Predicted argumentation frameworks of Y by X.



Here, we introduce the concept of changing move. It represents the turning
point of the move from the state in which Y does not accept ¬ρ, to the state in
which Y accepts ¬ρ.

Definition 21 (changing move). For a dialogue dk+1 = [m0, . . . ,mk], if ¬ρ /∈
Bel(AFdk

Y ) and ¬ρ ∈ Bel(AFdk+1

Y ), then mk is said to be changing move, c-move
in short.

The following theorem and its corollary show a condition for a non-failing
dialogue.

Theorem 1. If ΠY = ΣY , X does not give c-move at Nk for any k (1 ≤ k) by
the strategy SNF .

Corollary 1. If ΠY = ΣY and ¬ρ /∈ Bel(AFdk

Y ) then X can avoid a fatal move
at Nk for any k (1 ≤ k) by the strategy SNF .

When the predicted knowledge base is equivalent to the real knowledge base,
if there exists such an initial move that X predicts that Y will not believe ¬ρ
next, then X never loses. It means that there is a case in which we can judge
that X never loses under the strategy SNF simply from given knowledge bases.

Next, we consider the case in which the predicted knowledge base is a subset
of the real knowledge base.

We show the condition in which X’s strongly win can be judged only from an
initially given Y ’s real knowledge base. The following theorem shows that when
the prediction is a subset of the real knowledge base, if ¬ρ is not derived from
Y ’s knowledge base, then X strongly wins by the strategy SNF .

Theorem 2. If ΠY ⊆ ΣY and ΣY ̸⊢ ¬ρ, ρ ∈ Bel(AFdk

X ) ∩ Bel(AFdk

Y ) holds
for a complete dialogue dk by the strategy SNF .

Next, we discuss what formulas should be included in a predicted knowledge
base ΠY .

The following theorem shows that it is insufficient to decide the condition for
ΠY , in order not to fail in X’s persuasion simply from given knowledge bases,
rather all dialogues must be surveyed.

Theorem 3. Let S be a set of formulas in NBA-arguments of AF (ΣX ∪ ΣY ),
If ΠY = S\ΣY , then X cannot always avoid the fatal move by the strategy SNF .

We show a condition for ΠY using the concept of safe move. For a dialogue
dk, let AFdk

Y = ⟨ARdk

Y , AT dk

Y ⟩ and PAFdk

Y = ⟨PARdk

Y , PAT dk

Y ⟩. Then PARdk

Y ⊆
ARdk

Y holds.

Definition 22 (safe move). Assume that ΠY ⊆ ΣY . Let mk be a move,

AFdk+1

Y = ⟨AR
dk+1

Y , AT
dk+1

Y ⟩ and PAFdk+1

Y = ⟨PAR
dk+1

Y , PAT
dk+1

Y ⟩. If there

does not exist A ∈ AR
dk+1

Y −PAR
dk+1

Y such that ∃C ∈ AR
dk+1

Y ; (C,A) ∈ AT
dk+1

Y

holds, then the mk is said to be safe.



An intuitive meaning of a safe move is as follows: when we compare Y ’s
argumentation framework and the predicted argumentation framework of Y by
X, let S be a set of arguments that are included in the former but not in the
latter; there is no argument in S that is attacked by some argument in the
former.

For a complete dialogue dk = [m0, . . . ,mk−1] between X and Y on ρ, let mi

(0 ≤ i ≤ k − 1) be a c-move, and SAdk
be a set formulas in NBA-arguments

in AFdi+1

Y . Let SA = ∪dk
SAdk

. It is clear that SA ⊆ ΣX ∪ΣY . Therefore, SA
is divided into two disjoint subsets SAX\Y and SAY , where SAX\Y is a set of
formulas included in ΣX\ΣY and SAY is a set of formulas included in ΣY .

Theorem 4. If ΠY = SAY and all c-move in a dialogue tree are safe, then X
does not give c-move at Nk for any k (1 ≤ k) by the strategy SNF .

Corollary 2. If ΠY = SAY , all c-move in a dialogue tree are safe and ¬ρ /∈
Ext(AFdk

Y ), then X can avoid a fatal move at Nk for any k (1 ≤ k) by the
strategy SNF .

6 Discussion

There have been many studies on Dung’s abstract argumentation framework [12].
A dialogue model using argumentation based on this framework has been pro-
posed. In a multi-agent environment, a dialogue is usually regarded as a game
between agents with independent knowledge bases, and an argumentation frame-
work that changes as the dialogue proceeds is constructed.

Our model is based on the one studied by Amgoud et al. The model is set out
and applied to several types of dialogues [2]. The strategy is defined and the dia-
logue according to the strategy is shown [3]. There, the strategy is based on the
level of acceptance, strength of the argument and attitude of the agents. The var-
ious relationships between sets of knowledge, including that between the joint
knowledge of agents and the outcomes of dialogues, are investigated [9]. The
most significant difference between our work and theirs is the use of the pre-
dicted knowledge base. We construct a strategy using the predicted knowledge
base, whereas their strategy is constructed without considering the opponent’s
inner state. Moreover, we have given an explicit definition to the argumenta-
tion framework for the current state of a dialogue, whereas formalization of the
current argumentation framework is ambiguous in their works.

It is essential to consider an opponent’s beliefs, especially in handling a strate-
gic dialogue, which may include a lie. Thimm et al. studied a strategy that re-
flects an opponent’s belief [6]. But they did not relate belief to an extension
of an argumentation framework. Sakama presented the treatment of untrusted
argumentation [13]. Rahwan et al. discussed hiding and lying in argumenta-
tion [12]. In these works, abstract argumentation frameworks are used, whereas
a structured framework is used in our model.



ASPIC+ is a structured argumentation framework that generates arguments
from a knowledge base using logical entailment [10]. However, only static argu-
mentation can be handled in that framework and dynamically changing struc-
tures are not available. Okuno et al. proposed a dynamic structured argumenta-
tion [8]. In their proposed method, each agent’s argument is generated from their
own knowledge base and commitment store, and the argumentation structure dy-
namically changes. Their model did not operate at the dialogue level, whereas
we propose here a dialogue model based on an argumentation framework that
changes at every move.

7 Conclusion

We have proposed a dialogue model that utilizes a predicted knowledge base
and a strategy of withholding moves predicted to fail and only providing moves
that avoid failure to persuade. We have investigated the conditions under which a
persuasive dialogue never fails using this strategy, when the predicted knowledge
base is equivalent to the actual knowledge base of an opponent. The introduction
of prediction provides a model that better simulates real dialogue.

Moreover, we have discussed what a predicted knowledge base should include
for a persuasive dialogue not to fail. Our main contribution is to set out the
formalization of a dialogue using prediction and to propose a strategy for non-
failing persuasion.

There are several issues that should be addressed in future work. The con-
ditions presented herein for non-failing persuasion are relatively loose and inef-
ficient and, therefore, more rigorous and efficient conditions should be explored.
The next step is to determine conditions for successful persuasion rather than
for non-failing persuasion. In addition, we will investigate a case in which a
predicted knowledge base is not a subset of an actual one.

Because it is necessary to have an opponent’s predicted knowledge base to
construct a lie or to reveal it, our final goal is to develop a strategy to handle di-
alogue that includes a lie, and to investigate conditions of a predicted knowledge
base that support the validity of the strategy.

References

1. L.Amgoud and C.Cayrol: On the acceptability of arguments in preference-based
argumentation. UAI 1998: pp.1-7, 1998.

2. L.Amgoud, N.Maudet and S.Parsons. Modeling dialogues using argumentation. IC-
MAS2000, pp.31-38, 2000.

3. L.Amgoud and N.Maudet. Strategical considerations for argumentative agents (Pre-
liminary Report). NMR2002, pp.399-407, 2002.

4. T.Bench-Capon: Persuasion in practice argument using value-based argumentation
frameworks. Journal of Logic and Computation, 13(3):pp.429-448, 2003.

5. P.M.Dung: On the acceptability of arguments and its fundamental role in non-
monotonic reasoning, logic programming and n-person games. Artificial Intelligence,
77:321-357, 1995.
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Appendix

We show the sketch of the proofs because of the space limit.

Proof for Lemma 1. For any dialogue di = [m0, . . . ,mi−1], if X can proceed
with the dialogue just by giving ignore as acts of mi, . . . ,mk, then X does not
add any information to Y . Therefore, a complete dialogue [m0, . . . ,mi−1,mi, . . . ,mk]

exists that satisfies Bel(AFdk+1

Y ) = Bel(AFdi

Y ). Thus, such a leaf node Nk+1 ex-

ists that satisfies Bel(AFdk+1

Y ) = Bel(AFdi

Y ) in a subtree of which the root

node is Ni. Therefore, for each node Ni, if ¬ρ /∈ Bel(AFdi

Y ) holds, then there

exists a leaf node Nk+1 such that ¬ρ /∈ Bel(AFdk+1

Y ) in a subtree of which
the root node is Ni. From a contraposition of this statement, for each node

Ni, if ¬ρ ∈ Bel(AFdk+1

Y ) holds at all leaf nodes Nk+1 in a subtree of which

the root node is Ni, then ¬ρ ∈ Bel(AFdi

Y ) holds. Here, the subtree in which

¬ρ ∈ Bel(AFdk+1

Y ) holds at all leaf nodes Nk+1 is a failure tree. Therefore,

¬ρ ∈ Bel(AFdi

Y ) holds at the root node of this subtree. ⊓⊔

Proof for Theorem 1. For any dialogue dk, an agent must not give a move

at Nk if ¬ρ ∈ Bel(PAFdk+1

Y ) holds by rule 2(i) of the strategy SNF . It follows

that ¬ρ /∈ Bel(AFdk+1

Y ) holds, since ΠY = ΣY . It means that a move other than
c-move should have been selected by the strategy SNF . ⊓⊔

Proof for Corollary 1. If a fatal move is selected at Nk, there exists a failure

tree of which the root is Nk+1. From Lemma 1, ¬ρ ∈ Bel(AFdk+1

Y ) holds. It
means that this move is a c-move. It is a contradiction from Theorem 1. There-
fore, an agent can avoid the fatal move by the strategy SNF . ⊓⊔



Proof for Thereom 2. In this case, according to the strategy SNF , agent X
first gives assert(ρ), and repeats ignore against any move given by Y afterwards.
Y cannot attack ρ since s/he cannot construct an argument of which a conclusion
is ¬ρ. In this case, ρ ∈ Bel(AF (ΣY ∪ {ρ})) = Bel(AFdk

Y ). ⊓⊔

Proof for Theorem 3. We show an example. Assume that the strength of each
formula is given as follows: str(a) = str(a → ρ) = 5, str(b) = str(c) = str(b →
¬ρ) = 4, str(b → ρ) = str(c → ρ) = 3, str(¬ρ) = 2 and str(ρ) = 1. Assume
that knowledge bases are given as follows: ΣX = {ρ, b, b → ρ, c, c → ρ, a},
ΣY = {¬ρ, b → ¬ρ, a → ρ}. Then, ΠY is defined as {a → ρ}.

In this case, a dialogue in which X behaves according to the strategy SNF
proceeds as follows. X gives assert(ρ) as an initial movem0. Then, Y can give ei-
ther assert(¬ρ), challenge(ρ) or ignore. Assume that Y gives assert(¬ρ) as m1.
Then X can gives either m2 = assertS({b, b → ρ}, ρ) or m′

2 = assertS({c, c →
ρ}, ρ). Let d3 and d′3 dialogues [m0,m1,m2] and [m0,m1,m

′
2], respectively. If

X gives m2, it causes Y to make a new argument ({b, b → ¬ρ},¬ρ), which is
an NBA-argument in AFd3

Y . Therefore, Y believes ¬ρ at the state. Since this
argument is not attacked other than by ({a, a → ρ}, ρ) which never appears in
any dialogue, ¬ρ ∈ Bel(AFdk

Y ) holds for dk = [m0,m1,m2, . . . ,mk−1]. On the
other hand, if X gives m′

2, it causes Y to make a new argument ({c, c → ρ}, ρ),
which attacks an argument (∅,¬ρ) in AFd′

3

Y . Therefore, Y believes ρ at that
state. Thus, m2 is a fatal move. However, the strategy SNF cannot determine
which is the best move between m2 or m′

2. We should have b → ¬ρ in ΠY ,
instead of a → ρ. ⊓⊔

Proof for Theorem 4. Assume that X gives c-move at Nk. Let A ∈ AR
dk+1

Y −
PAR

dk+1

Y . Since A is an NBA-argument inAFdk+1

Y , fml(A) ⊆ SAY ∪SAX\Y . On

the other hand, fml(A) ∩ SAY ⊆ SAY = ΠY and fml(A) ∩ SAX\Y ⊆ CS
dk+1

X .

Therefore, fml(A) ⊆ ΠY ∪ CS
dk+1

X . On the other hand, ΠY ∪ CS
dk+1

X ⊆ ΠY ∪
CS

dk+1

X ∪ CS
dk+1

Y = Fml(PAR
dk+1

Y ). It follows that A ∈ PAR
dk+1

Y , which is a
contradiction. Therefore, X never gives c-move at Nk. ⊓⊔

Proof for Corollary 2. It is proved from the Theorem 4 using similar logic to
the proof of Corollary 1. ⊓⊔


