
Certified Merger for C Programs Using a Theorem Prover:
A First Step

Yuki Goto Kazuko Takahashi
School of Science & Technology School of Science & Technology

Kwansei Gakuin University Kwansei Gakuin University
2-1, Gakuen, Sanda, 669-1337, JAPAN 2-1, Gakuen, Sanda, 669-1337, JAPAN

Abstract

This paper proposes a method of using theorem
provers for supporting system development. As a case
study, we construct a certified merger for C programs.
The merger is implemented and verified by a theo-
rem prover Isabelle/HOL. It also has a front-end and
back-end which connect to C programs. It provides a
useful tool for users who are not familiar with theorem
provers. It can be applied to merging test suits used
in the verification stage.

Keywords: theorem prover, merger, system verifica-
tion, software development

1 Introduction

Recently, the size of software becomes larger and
more complicated controls are contained in it. Some
of them are operated in parallel or distributed envi-
ronment. Moreover, hardware and software should be
totally handled in case of embedded systems. These
facts cause to raise both importance and difficulty in
developing a reliable software.

It is proposed that formal methods [5] such as
model checking or theorem proving should be intro-
duced which can provide a formally specified and me-
chanically proved software. In such a sophisticated
approach, validity for all possible cases can be guar-
anteed based on logic or mathematics, which cannot
be covered by a usual test-based approach. However,
formal methods are not so popular in an actual de-
velopment scene although the cases they are partly
introduced are increasing in number. The main rea-
son is that most software developers are not familiar
with such a formalization, and high expertized knowl-
edge and long-term training are required to manage
these tools. Above all, theorem proving technique is
stronger to handle infinite data, but it is harder to get
used to it. In addition, users other than the developer
cannot analyze the detail of software in some cases be-
cause of its inner complicated structure and a huge

size. For example, we cannot represent full specifica-
tion of a commercial C compiler such as gcc, of which
several bugs have been reported so far [17]. It means
that system test is still valid and frequently used in
the verification stage.

In a test stage, not only a simple data but also
structured data such as a program is used as input
data. These data are sometimes combined or merged
into one program automatically to increase efficiency
in the test stage [4]. The correctness of such a merger is
more important than that of the target software to be
verified, since if the test program is incorrect, when an
error occurred in a test, it cannot be decided whether
it is due to the target software or the test program.

In this paper, we take the verification of a merger
of test programs for C compiler as a case study. We
implement it and prove its correctness using a theo-
rem prover Isabelle/HOL [14], and construct a certi-
fied merge system for C programs.

Merger combines a set of programs consistently.
It is not a simple combination, since the duplication of
names of variables and functions should be eliminated.
As the main job of the merger is the renaming, that
is an operation on characters, the target of the for-
malization is program syntax rather than semantics.
In this paper, we take such a syntactical correctness
of a merger. In the proof procedure, we clarify the
condition to be satisfied. If a sufficient condition is
not specified, the proof does not succeed. It makes
the user to reconsider the condition to be added. This
cannot be done in a usual unproved merger.

Our merger consists of three parts. First, given
pair of C programs are converted to the representation
of Isabelle/HOL in the front-end process. Second, the
converted programs are merged by the certified merger
on Isabelle/HOL in the main part. Third, the result
is converted to C code and written onto the file in the
back-end process.

Since Isabelle/HOL is based on a functional lan-
guage, programming style is different from popular C
language. However, our merger system has the inter-
face with C program, even the users familiar only with

978-1-880843-90-1 / ISCA CATA / March 2013

C language feel less burden to use it. It can contribute
to increase efficiency of system development.

The rest of this paper is organized as follows. In
Section 2, we describe a theorem prover Isabelle/HOL.
In Section 3, we describe our certified merger in Is-
abelle/HOL. In Section 4, we explain the merger sys-
tem. In Section 5 we show the related works. Finally,
in Section 6, we present our conclusions.

2 Isabelle/HOL

Theorem proving is a technique for formal meth-
ods and several tools have been developed such as
Isabelle/HOL [14], Coq [3], ACL2 [7] and PVS [15].
They are sometimes called proof assistants, since the
proof usually goes not full-automatically, but needs a
navigation of a user. There are many applications for
theorem proving, from pure mathematics to practical
hardware verification or security protocols, and many
successful results have been reported [6].

Here, we use Isabelle/HOL, since it has a strong
simplification mechanism, which helps to make a proof
semi-automatic. It is a theorem-proving environment
that is part of the HOL system. Data types and func-
tions are defined in recursive form. If a function is not
well-defined, it is not accepted. The proof goes back-
wardly. In other words, the prover first tries to verify
the goal shown by the user; if it cannot be proved di-
rectly, the prover generates subgoals using tactics such
as resolution and assumption. The prover repeats this
process for each subgoal, and if all the subgoals are
proved to be true, the verification terminates.

3 Certified Merger in Isabelle/HOL

3.1 Overview of merger

For a pair of C programs, we set one of them as
a primary program and the other is a secondary pro-
gram. The merger merges them by adding statements
of a secondary one to the structure of a primary one.
It performs renaming for the secondary program as fol-
lows: it changes names of functions (including “main”)
and those of global variables by adding the file name
of the secondary program as a pre-sequence; it makes
the renamed “main” function of the secondary pro-
gram to be called in the “main” function of the merged
program; in addition, it changes all the names of the
elements effected by these renaming.

Figure 1 shows an example. Let F be a file name
of a secondary program. In Figure 1, both of a pri-
mary and a secondary program have a global variable
V. The global variable name in the secondary program

% primary program

int V;

int main(void)

{ V = 1; }

% secondary program

int V;

int main(void)

{ V = 0; }

% merged program

int V;

int FV;

int main(void) {

Fmain();

V = 1;

}

int Fmain() {

FV = 0;

}

Figure 1: An example of merging two programs

is changed to FV, and ”main” in the secondary pro-
gram is renamed to ”Fmain”. Note that if FV occurs
in the primary program and V occurs in the secondary
program, then duplication appears in the merged pro-
gram.

3.2 Formalization

We represent formally a pair of C programs and
the merger in Isabelle/HOL. If occurrence of variables
and function types are inconsistent, the definition is
not accepted. Since what merger does is a syntactical
transformation, if a definition is accepted, then basi-
cally syntactical correctness is guaranteed.

Each C program consists of a quad-ruple of
FileName, GvarList, Funcs and Main. It is defined
as s datatype Prog.

Prog = ”(FileName * GvarList * Funcs * Main)”

FileName is a file name the program is stored.
GvarList is a list of global variables which are

declared in the program.
Funcs is a list of definitions of functions. Each

definition consists of output type, a function name, a
list of arguments with their types and a function body
that is a list of the statements.

Main is a body of the “main” function.
Since Isabelle/HOL is based on functional lan-

guage, the computation model is based on reduction,
that is, the input term is rewritten to the output term
in the computation.

Hereafter, V1 + V2 denotes the connection of
strings of variables V1 and V2. Let F be a file name of
a secondary program.

merge is composed of four functions
merge func, merge gvar, add change main1 and
add change main2. All these functions including
merge is a function from Prog and Prog to Prog.

fun merge :: ”Prog ⇒ Prog ⇒
Prog” where ”merge pr1 pr2 =

merge func (merge gvar (add change main1

(add change main2 pr1 pr2) pr2) pr2) pr2)

For Main of pr2, (add change main2 pr1 pr2)
changes the name CF of function in each function call
to F+CF, changes the name GV of each global variable
to F+GV, sets the result as the function body of a
new function; sets F+”main” as the function name of
a new function; adds the definition of this new function
to Funcs of pr1 and outputs the resulting program.

(add change main1 pr1 pr2) adds the function
call F+”main” to “Main” of pr1, and outputs as the
resulting program.

(merge gvar pr1 pr2) changes the name VN of
each element of GvarList of pr2 to F+V and outputs
as the resulting program.

For each function of Funcs in pr2,
(merge func pr1 pr2) changes the name FN to
F+FN, changes each function call CF to F+CF if
there is any in its body, adds the result to Funcs of
pr1 and outputs the resulting program.

fun change funcs :: ”Prog ⇒ Funcs ⇒
Funcs” where ”change funcs pr xs =

callfunc changename2 pr (funcs changename pr xs)”

This code shows the definition of the function ac-
cording to the final step of merge func. The func-
tion is given Prog and Funcs as the inputs, and
outputs Funcs. It is a composition of functions
funcs changename and callfunc changename2.

The main points of the formalization in Is-
abelle/HOL is as follows.

We define a new data type of string as a list of
characters. Although string is already set in the li-
brary, it includes a lot of definitions such as ”Nibble”
that are unnecessary in our merger, which sometimes
makes a proof procedure complicated. Thus, we define
the minimum string as new model for easy treatment
of a string.

We use list as a data type in lots of definitions.
Usage of the higher-order function helps much in the
proof.

fun gvar changename :: ”Prog ⇒ GvarList ⇒
GvarList” where “gvar changename pr gs =

map(λx. case x of (GV gvtype gvname) =⇒
(GV gvtype ((fst pr) @ gvname))) gs′′

In this example, an anonymous function adds the
file name denoted by (fst pr) to an element gs in the
form of (GV gvtype gvname) of GvarList. The func-
tion map takes this anonymous function as an argu-
ment and applies it on all the elements of GvarList.

3.3 Proof

The correctness of merger is specified in several
points: renaming is consistent, no duplication appears
in the variable names and function names in the re-
sulting program, the relationship between caller and
callee are preserved. We show some lemmas stating
these points.

Let F be a file name of a secondary program.
If a primary program and a secondary program

have no duplication in the names of global variables,
respectively, there is no variable V that occurs in the
secondary program and F+V occurs in the primary
one, and the secondary program is not empty, the
merged program has no duplication.

lemma no duplication :

(distinct (Prog2GvStrl pr1) ∧
distinct (Prog2GvStrl pr2) ∧ (∀ a. ((a ∈
set (Prog2GvStrl pr1)) −→ (hd a 6=
hd (fst pr2))))) & fst pr2 6= [] =⇒
distinct (Prog2GvStrl (merge gvar pr1 pr2))

Here, −→ denotes the logical connection used in
the higher-order logic, where =⇒ denotes an inference
rule.

In our experience, first an error occurred in the
proof since we missed the last condition. We succeeded
in the proof after adding this condition. If a merger is
not certified, this condition may be missing.

Renaming of global variables in the secondary
program is correctly done. That is, the variable name
is changed to be the one added by the file name on
its head. Note that @ denotes the operation of list-
append.

lemma correct renaming of gvs :

Prog GvarList (merge pr1 pr2) =

(Prog GvarList pr1) @ (gvar changename pr2

(Prog GvarList pr2))

The head of the “main” function of the merged
program is the statement that calls the function named
F+”main”.

lemma : correct trans of main

(hd (Func StatementList (Prog Main

(merge pr1 pr2)))) =

(CallFunc ((fst pr2) @ (Func Name (Prog Main

pr2))) [])

The body of the function named F+”main” is
included in the list of definitions of the functions.

lemma : correct trans of body

(Statement2CallFuncName (hd

(Func StatementList (Prog Main (merge pr1 pr2)))))

∈ set (Prog2FuncNamel (merge pr1 pr2))

The merger in Isabelle/HOL consists of about
535 lines including all definitions and lemmas, and the
number of proved lemmas is 11.

4 The System

4.1 System configuration

The certified merger system for C programs con-
sists of three parts: front-end, main part and back-end
(Figure 2).

Front-end is a converter from a pair of C programs
to Isabelle/HOL representation, main part is a certi-
fied merger written in Isabelle/HOL, and back-end is
a converter from the result of merging represented in
Isabelle/HOL to the corresponding C program. Front-
end and back-end are implemented in C.

4.2 Representation of an object program

The target C program is a subset of the com-
plete C program (Figure 3). It covers the essential el-
ements such as assignment statements, control state-
ments, function calls, but does not handle the data
type of array, structure, pointer, and statements such
as “goto” and “break.” The one reason is that the first
goal of this work is to show the validity of treatment of
merger in Isabelle/HOL, and the other reason is that
motivated application is merging test programs, each
of which consists of these fundamental elements. The
method shown here can be easily extended for the full
language specification.

4.3 Conversion from C program to Is-
abelle/HOL

C program consists of three parts: declaration,
“main” function and the list of functions. The front-
end processor reads source code of C, extracts decla-
ration of the global variables, definitions of functions
and stores them in the corresponding arrays, respec-
tively. Then, it transforms them to the program data
in Isabelle/HOL.

Figure 4 shows the image of front-end process.

4.4 Conversion from Isabelle/HOL to C
program

As Isabelle/HOL is a prover, it basically proves
the given lemma and produces only its result, that is,
true or false. We use “value” command which eval-
uates the computation to get the resulting values of
variables corresponding to a list of global variables and

program ::= (defVar ";")* (decFun ";")*

defMain (defFun)*

defVar ::= type varName

decFun ::= type funName "(" ("void" |

decVar ("," decVar)*) ")"

defFun ::= type funName "(" ("void" |

decVar ("," decVar)*) ")" funBody

defMain ::= "int" "main" "(void)" funBody

funBody ::= "{" stmt* "}"

type ::= "int" | "double"

stmt ::= ε | funCall ";" | assStmt | decVar
assStmt ::= expLhs "=" exp ";"

Lhs "=" exp ";"

exLhs ::= varName

varName ::= CHAR (CHAR)*

exp ::= INT | CHAR | funCall | refVar

refVar ::= varName

funCall ::= funName "(" argList ")"

funName ::= CHAR (CHAR)*
argList ::= (ε | exp ("," exp))*
CHAR ::= "A"|"B"|"C"|"D"|"E"|"F"|"G"|"H"|"I"|

"J"|"K"|"L"|"M"|"N"|"O"|"P"|"Q"|"R"|

"S"|"T"|"U"|"V"|"W"|"X"|"Y"|"Z"

INT ::= "0"|"1"|"2"|"3"|"4"|"5"|"6"|"7"|"8"|"9"

Figure 3: Syntax of a target program

definitions of functions, respectively. As Isabelle/HOL
is processed using the Emacs interface called “Proof
General,” we write this result onto the file using Emacs
command. The data is stored in the corresponding ar-
rays, and the resulting C code is generated from this
data. Finally, we get the merged C program.

4.5 Application to test suits

In software development, a test suite (validation
suite) is a collection of test cases. It is intended to be
used to show that software program has some speci-
fied set of behaviors [4]. When we want to perform
multiple test programs stored separately, we combine
them to the single program to reduce the times of file
opening/closing. In such a case, a merger is used.

We applied the certified merger to sample pro-
grams in test suits and confirmed that the merged
program generates the same output with the one when
each test program is executed separately.

5 Related Works

The merger we developed is expected to be used
in the test process of a compiler verification.

The beginning of the application of theorem prov-
ing technique to the compiler verification is back to
Moore’s earlier work [13]. Afterwards, there have been
several studies on the verification of compilers.

Figure 2: A certified merger: system configuration

Leinenbach shows the correctness of C0 compiler,
as a subset of C, using Hoare logic in Isabelle/HOL
[8]. They studied it in the Verisoft project aiming at
pervasive verification of entire computer systems from
hardware to software.

Leroy constructed certified C compiler using
Coq [9]. It is an elaborating work that can be ap-
plied to practical use. They handle all the semantics
including register allocation and data flow. In their
system, an input Cminer program, a large subset of C,
is transformed into machine language through several
intermediate languages. They proved that the correct
code is generated. Afterwards, they extend the spec-
ification of the target C programs and verification of
front-end and back-end processors [1, 10, 11].

Strecker showed the verification of Java compiler
written in Isabelle/HOL [16]. They also prove that the
back-end processor generates the correct code [2].

Zimmerman presented a proof approach based on
abstract state machines (ASM) for bottom-up rewrit-
ing system specifications for back-end generators [18].
These strategies are implemented in PVS to generate
a correct compiler. They verified the correctness of
transformation from an intermediate language to the
machine language. Their main purpose is to provide a
compiler that generates the code for a real-life proces-
sor. Although they use PVS, the entire proof contains
manually proved parts.

Mansky showed the verification of the optimiza-
tion of the compiler. They verified the correctness of
the optimizer defined on a graph representation for the
compiler using Isabelle/HOL [12].

Most of these works prove the correctness of the
compiler from the semantic point of view. It is one
possibility of applying theorem proving technique in
system verification. On the other hand, we take an-
other approach of proving the correctness of software
used in the test stage. In this case, proof on the syntax
level is appropriate. There have been no works on ap-
plication of theorem provers to the syntax level proof,
and no certified merger has been provided so far.

6 Conclusion

We have developed the certified merger for C
programs in Isabelle/HOL. If a function is not well-
defined, or some condition is missed, the error is re-
ported, whereas a usual merger passes through such a
case. That is the advantage of certified merger. Use of
a theorem prover can clarify the conditions that input
programs should satisfy.

Interface with C program enables users not fa-
miliar with theorem proving to use the system easily.
This is a way of applying theorem provers to a support
on system development.

There is a restriction on the target C program.
We are considering to loosen them. Proving the front-
end and back-end parts is more challenging. We have
to make a different model of the merger since we have
to consider semantics to prove them. We consider it
as a second step of our work.

Although we showed the application to merger of
test suits here, other mergers, for example, merging
LaTeX programs, can be constructed and verified in
the same way. We are considering to make the set of
definitions and proofs of Isabelle/HOL in the sophis-
ticated form and to publish it as a library.

In future, we will introduce an optimizing process,
for example, elimination of redundant variables and
the functions with the same definitions, to this certified
merger.

References

[1] G. Barthe, D. Demange and D. Pichardie, A for-
mally verified SSA-based middle-end Static Single
Assignment meets CompCert, ESOP12, pp.47-66,
2012.

[2] S. Berghofer and M. Strecker, Extracting a for-
mally verified, fully executable compiler from a
proof assistant, COCV03, pp.33-50, 2003.

Figure 4: Screenshot of front-end process

[3] Y. Bertot and P. Castéran, Interactive Theo-
rem Proving and Program Development: Coq’art-
The Calculus of Inductive Constructions, Springer,
2004.

[4] C. Cheng, The test suite generation problem: Opti-
mal instances and their implications, Discrete Ap-
plied Mathematics, Vol.155, No.15, pp.1943-1957,
2002.

[5] Formal methods: state of the art and future direc-
tions, E. Clarke and Jeannette. Wing JACM Com-
puting Surveys, Vol.28, No.4, pp.626-643, 1996.

[6] H. Geuvers, Proof assistants: History, ideas and fu-
ture, Sadhana : Academy Proceedings in Engineer-
ing Sciences (Indian Academy of Sciences), Vol.34,
No.1, pp.3-25, 2009.

[7] M. Kaufmann, P. Monolios and J. Moore,
Computer-Aided Reasoning: An Approach, Kluwer
Academic Publishers, 2000.

[8] D. Leinenbach, W. Paul and E. Petrova, Towards
the formal verification of a C0 compiler: Code gen-
eration and implementation correctness, SEFM05,
pp.2-12,2005 .

[9] X. Leroy, Formal certification of a compiler back-
end or: programming a compiler with a proof as-
sistant, POPL06, pp.42-54, 2006.

[10] X. Leroy, Formal verification of a realistic com-
piler, Communications of the ACM, Vol.52, No.7,
pp.107-115, 2009.

[11] X. Leroy, A formally verified compiler back-end,
Journal of Automated Reasoning, Vol.42, No.4,
pp.363-446, 2009.

[12] W. Mansky and E. Gunter, A framework for for-
mal verification of compiler optimizations, ITP10,
pp.371-386, 2010.

[13] J. Moore, A mechanically verified language im-
plementation, Journal of Automated Reasoning,
Vol.5, pp.461-492, 2009.

[14] T. Nipkow, L. C. Paulson, and M. Wenzel, Is-
abelle/HOL A Proof Assistant for Higher-Order
Logic, Springer, 2008.

[15] S. Owre, J. Rushby and M. Shankar, PVS: A pro-
totype verification system, CADE92, pp.748-752,
1992.

[16] M. Strecker, Formal verification of a Java com-
piler in Isabelle, CADE02, pp.63-77, 2002.

[17] X. Yang, Y. Chen, E. Eide and J. Regehr, Finding
and understanding bugs in C compilers, PLDI11,
pp.283-294, 2011.

[18] W. Zimmermann and T. Gaul, On the con-
struction of correct compiler back-ends: an ASM-
approach, Journal of Universal Computer Science,
Vol.3, No.5, pp.504-567, 1997.

