
A Semantics for Dynamic Argumentation

Frameworks

Kazuko Takahashi and Yu Nambu

School of Science & Technology, Kwansei Gakuin University,
2-1, Gakuen, Sanda, 669-1337, Japan

ktaka@kwansei.ac.jp, jammy jam up@yahoo.co.jp

Abstract. This paper presents a semantics for dynamic argumentation
frameworks. A dynamic argumentation system involves the concept of ex-
ecution of an argumentation affecting subsequent arguments. Although
such dynamic treatment is necessary to grasp the behavior of actual
argumentation, semantics proposed to date can only handle the static
aspects. Here, we present a new semantics that fits dynamic argumen-
tation. We discuss what properties hold and explain how to compute
changes in the set of acceptable arguments, depending on the presenta-
tion order of arguments.

1 Introduction

Argumentation is a powerful tool that enables the formal treatment of interac-
tions, such as negotiation and agreement, among agents. There have been many
studies of argumentation systems [4,21].

An argumentation framework is usually defined as a pair 〈Args,Atts〉, where
Args is a set of arguments, and Atts is a binary relation over Args that indicates
an attack by one argument on another. Most argumentation systems developed
to date analyze a given argumentation framework statically. They consider ar-
gumentation theory as fixed or focus on the selection of a specific argumentation
theory that will result in the acceptance of a particular proposal. These systems
are based on the assumption that arguing agents have a common knowledge base
and can survey all possible arguments. However, knowledge bases actually differ
between agents, so as each argument is presented, new information is added to
modify the subsequent argumentation. We have developed a dynamic argumen-
tation system, “the Argumentation Procedure with Knowledge Change (APKC),”
in which argumentation theory changes depending on the execution [19], and its
extended version, APKC2 [20]. Our goal was to capture the behavior of actual
argumentation with greater precision. The proposed system is based on the con-
cept of “execution” of an argument. We investigated the phenomenon in which
new information is added by a presented argument, and this generates a new
attack.

In APKC2, an argumentation continues over multiple argumentation lines. We
demonstrated that the results may differ depending on the order of execution.

P. McBurney et al. (Eds.): ArgMAS 2011, LNAI 7543, pp. 66–85, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

A Semantics for Dynamic Argumentation Frameworks 67

We also proposed a judgment algorithm, JC, which can determine which agent
wins without actually simulating each execution individually [20]. Although this
previous work investigated simulation and judgment in dynamic argumentation,
it did not clarify the meaning of each execution and the relationships between
executions. In this paper, we present a new semantics to fit the dynamic argu-
mentation system.

A semantics for an argumentation framework is usually given with the notion
of extension [11], i.e., a set of arguments that can be accepted together within
a given argumentation framework. However, in dynamic argumentation, argu-
ments and attacks change as the argumentation proceeds. Therefore, a semantics
in which acceptability is defined for a static argumentation is not suitable for
dynamic argumentation. In this paper, we present a separate extension for each
execution as an acceptable set of arguments for that execution. An extension
for a dynamic argumentation framework is defined as the set of these individual
extensions. In addition, we discuss how these extensions are changed as argu-
mentation proceeds and investigate their interrelationships and properties.

The remainder of this paper is organized as follows. In section 2, we explain our
motivation. In section 3, after presenting basic concepts, such as argumentation
frameworks, we present a dynamic argumentation system. In section 4, we define
the semantics for dynamic argumentation frameworks, and show the rules by
which the revision of extensions is computed. In section 5, we compare our
approach to those used in related studies. Finally, in section 6, we present our
conclusions.

2 Informal Description for Dynamic Argumentation

In general, argumentation involves two agents taking turns presenting arguments
to attack their respective opponent’s argument until one is no longer able to at-
tack. Finally, the loser accepts the winner’s proposal. This process is usually
represented in the form of a tree [1,13]. The root node is a proposal statement,
and each branch corresponds to a single argumentation line, i.e., a sequence of
arguments. In a dynamic argumentation system [20], an argumentation proceeds
along each branch. Once an argument is presented, the corresponding node is
marked as “executed” and never reappears in the series of argumentation. If
there is no executable node in the current branch, then another branch that has
an executable node is selected. Finally, the agent that cannot make a counter-
argument loses the argumentation. An important feature of this system is the
concept of a “threat.” This refers to a case in which the execution of an ar-
gument results in the creation of a new counterargument to another argument.
Intuitively, a threat is an argument that may provide information advantageous
to the opponent. It changes the argumentation and affects the win/loss outcome.

For example, consider the argumentation tree shown in Figure 1(1). In this
figure, Pi and Ci show the argument of a proposer (P) and a defeater (C),

68 K. Takahashi and Y. Nambu

respectively. If we execute the argumentation from the left branch, after P0, C1,
and P1 are executed, C2 and P2 are executed, and P wins. If we execute from
the right branch, after P0, C2, and P2 are executed, C1 and P1 are executed,
and P also wins. Now, consider the argumentation tree shown in Figure 1(2),
which has a threat from C1 to C2. This means that execution of C1 causes the
creation of P2, a new counterargument to C2. If we execute an argumentation
from the left branch, after P0, C1, and P1 are executed, P2 is generated. Then,
C2 and P2 are executed and the execution finally terminates with P winning.
In contrast, if we execute the argumentation from the right branch, after P0

and C2 are executed, the execution terminates because C has the next turn, but
no branch is available that can start with C’s argument. In this case, C wins.
Note that P2 does not occur until execution of C1. This example illustrates two
important issues that must be addressed: (i) the winner of an argumentation
differs depending on the order of execution of the branches, and (ii) it is not
appropriate to handle a revised tree in the same way as one that consists of the
same nodes and edges without a threat.

(1)

P0

P1 P2

C1 C2

(2)

P0

P1 P2

C1 C2
threat

Fig. 1. Effects of a threat

3 Dynamic Argumentation System

3.1 Basic Concepts

In a dynamic argumentation, P and C have their own knowledge bases, which
may have common elements. We construct a dynamic argumentation framework
from given knowledge bases of agents and preference [19]. Preference is defined in
advance for each formula in the knowledge base. The preference of each argument
is used so that attack is possible only from an argument with a high preference
to an argument with a lower preference. Here, we do not explain preference in
detail, as it is beyond the scope of this paper.

Definition 1 (argument). Let Arga be a knowledge base for an agent a. An
argument of a is a pair (Ψ, ψ) where Ψ is a subset of Arga, and ψ ∈ Arga such
that Ψ is the empty set or Ψ = {φ, φ⇒ ψ}. Ψ and ψ are said to be the grounds
and the statement of the argument, respectively.

A Semantics for Dynamic Argumentation Frameworks 69

Definition 2 (argumentation framework). An argumentation framework is
defined as a triple 〈ArgP , ArgC , Atts〉, where ArgP and ArgC are sets of P’s
arguments and C’s arguments, respectively, Atts is a binary relation called attack
over ArgP ∪ ArgC , where for each (A,B) ∈ Atts, either A ∈ ArgP , B ∈ ArgC ,
or A ∈ ArgC , B ∈ ArgP holds. For each pair of arguments A,B, both (A,B)
and (B,A) are never contained in Atts at the same time.

Definition 3 (argumentation tree). Let ϕ be a proposal statement, and let
P and C be a proposer and a defeater of ϕ, respectively. Let AF be an argumen-
tation framework 〈ArgP , ArgC , Atts〉. Then, an argumentation tree for AF on
ϕ is defined as follows [1].

– This is a finite directed tree, the root node of which corresponds to an argu-
ment of which the statement is ϕ 1

– Every node corresponds to an argument in ArgP ∪ ArgC .
– Every edge from node N to M corresponds to an attack from an argument

corresponding to N to that corresponding to M .

Here, we call a path from the root node to a leaf node a branch. P’s argument
and C’s argument appear in turn in each branch. The same arguments may be
present in different branches; hence, it follows that each node has a unique parent
node. There is no loop in each branch due to the preference constraint.

Definition 4 (win of a branch). If the leaf of a branch D is P ’s argument,
then P wins D; otherwise, P loses D.

Definition 5 (candidate subtree). A candidate subtree is a subtree of an
argumentation tree that selects only one child node for each node corresponding
to C’s argument in the original tree and selects all child nodes for each node
corresponding to P’s argument.

Definition 6 (solution subtree). A solution subtree is a candidate subtree in
which P wins all of the branches in the tree.

Example 1. For an argumentation tree shown in Figure 2(1), Figure 2(2) and
Figure 2(3) are its candidate subtrees and Figure 2(2) is a solution subtree.

In most argumentation systems, the win/loss of an argumentation is defined
by handling each branch independently. However, in a dynamic argumentation
system, another branch may continue to be executed after all arguments of one
branch are executed. In this case, arguments disclosed so far in one line affect
arguments in another line. This may create a new argument and change the

1 In general, there may exist multiple arguments of which the sentence is ϕ with
different grounds in ArgP . Therefore, the root is considered an empty argument, and
the arguments to support ϕ should be considered its child nodes [19]. To simplify,
we consider a simple version by assuming that there exists only one such argument
and taking it as the root node.

70 K. Takahashi and Y. Nambu

P0

P2 P3

C1 C2

C3

P1

(1)

P0

P3

C1 C2

C3

P1

(2)

P0

P2 P3

C1 C2

(3)

Fig. 2. Candidate subtrees

winner of the argumentation. This is the most characteristic feature of dynamic
argumentation systems.

If φ ⇒ ψ and ψ are contained in P’s knowledge base, while φ is not, then
P cannot make an argument ({φ, φ ⇒ ψ}, ψ). However, if φ is contained in C’s
knowledge base and once it is disclosed, P can use φ to generate this argument,
which may be a new counterargument to C. We define such a case as a threat.

Definition 7 (threat). Let A and A′ both be arguments in ArgP or in ArgC .
If A generates more than one new argument that attacks A′, then it is said that
there is a threat from A to A′, and ArgP /ArgC contains a threat. A and A′

are a threat resource and a threat destination, respectively, which is denoted by
threat(A,A′).

Intuitively, a threat is an argument that may provide information advantageous
to the opponent. An argument may be a threat to another argument in the same
branch.

3.2 Execution of an Argumentation

Here, we present a dynamic argumentation system.
Both agents have their own knowledge bases. A set of all of the formulas

contained in all of the arguments given so far is stored in a commitment store
[15].

First, for a given argumentation framework, we construct an initial argu-
mentation tree in which all nodes are unmarked. An argumentation starts by
selecting a branch of an initial argumentation tree. It proceeds along the branch
with marking of the nodes, and when the execution reaches the leaf node, the
branch is suspended. At that time, the nodes in the branch are added to the
commitment store.

Next, another branch is selected. The branch containing unmarked nodes can
be selected. The suspended branch may be resumed if a new unmarked node
is added to it. Upon selection of a branch, the utterance turns should be kept.
This means that if one branch is suspended at the node that corresponds to one

A Semantics for Dynamic Argumentation Frameworks 71

agent’s argument, then the next branch should start with the node that corre-
sponds to the other agent’s argument. Agents can make new arguments using
the commitment store in addition to their own knowledge bases. Therefore, the
numbers of arguments and attacks increase in accordance with the execution of
each branch. New nodes are added to the argumentation tree if new arguments
are generated.

We show formal definitions in Figure 3 and Figure 4.

Definition 8 (executable node). For a node Mi (1 ≤ i ≤ n) in a branch
D = [M1, . . . ,Mn] and a current turn t, ifM1, . . . ,Mi−1 are marked,Mi, . . . ,Mn

are unmarked, and Mi is t’s argument, then the node Mi is executable.

Definition 9 (suspend/resume). After the execution of all nodes in a branch,
D is suspended. For a suspended branch D, if an executable node is added to its
leaf on the modification of a tree and D is selected, then D is resumed.

Execution of a branch from a specific node Mi (1 ≤ i ≤ n)

Let D = [M1, . . . ,Mn] be a branch and K be the commitment store.

1. Mark Mi, . . . ,Mn.
2. Update K by adding all of the formulas contained in arguments Mi, . . . ,Mn.
3. if Mn is P’s argument,

then set the current turn to C.
if Mn is C’s argument,

then set the current turn to P.

Fig. 3. Execution of a branch

In APKC2, both agents present arguments in turn, and the agent that cannot
give a counterargument loses the argumentation. An execution is determined on
a certain order of selecting branches.

Proposition 1. [19] (1) Any execution of APKC2 terminates in a finite time,
and its winner is decidable.

(2) The number of executions for an argumentation tree is finite.

Definition 10 (execution tree). For an argumentation framework, a subtree
of the tree finally obtained as a result of APKC2 along an execution exec, which
consists of the marked nodes and the edges between them is called an execution
tree for exec.

Example 2. Consider the argumentation tree shown in Figure 5(1), where
threat(C1, C2) exists. Let exec1 and exec2 be executions in which the left or
right branch is executed first, respectively. Then, the execution trees for exec1
and exec2 are shown in Figure 5(2) and Figure 5(3), respectively.

72 K. Takahashi and Y. Nambu

Argumentation Procedure with Knowledge Change (APKC2)

Let AF = 〈ArgP , ArgC , Atts〉 be an argumentation framework, ϕ be a proposed
statement, and K be the commitment store.

[STEP 1 (initialization)]
Set K = ∅.Construct an initial argumentation tree for AF on ϕ with all nodes
unmarked.

[STEP 2 (execution of an argumentation)]
if no branch has an executable node,

if the current turn is P, then terminate with P’s loss.
else the current turn is C, then terminate with P’s win.

else select a branch and execute it from the executable node to the leaf node.

[STEP 3 (modification of a tree)]
For a pair of arguments A,A′ ∈ ArgP/ArgC such that threat(A,A′) holds,
if A is marked,

then add a new argument B to ArgC/ArgP , respectively,
and add a new attack (B,A′) to Atts and modify the tree.

if the nodes N and M are identical, and N is marked while M is unmarked,
then mark M .

go to STEP 2.

Fig. 4. Argumentation Procedure with Knowledge Base (APKC2)

Definition 11 (win/loss execution). If APKC2 along an execution termi-
nates with P’s win/loss, then P wins/loses the execution.

Example 3. (Cont’d) P wins exec1 and loses exec2 in Example 2.

Definition 12 (continuous candidate subtree). For a candidate subtree
CT , if more than one candidate subtree is generated by the addition of nodes,
then these subtrees are said to be continuous candidate subtrees of CT .

Definition 13 (dynamic solution subtree). Let CT be a candidate subtree
of an initial argumentation tree. For any execution order of branches of CT , if
APKC2 terminates with P’s win or CT has a continuous candidate subtree such
that P wins, then CT is a dynamic solution subtree.

Definition 14 (dynamic win of an argumentation). If an argumentation
tree has a dynamic solution subtree, then P dynamically wins the argumentation;
otherwise, P dynamically loses it.

Example 4. (Cont’d) P loses the argumentation shown in Figure 5(1).

For an argumentation framework 〈ArgP , ArgC , Atts〉, let Tinit be an initial ar-
gumentation tree, and let Texec be an execution tree for an execution exec. If
there is no threat in ArgP and ArgC , then for any execution exec, Texec ⊆ Tinit.

A Semantics for Dynamic Argumentation Frameworks 73

(1) (2)

P0

P1 P2

C1 C2

P0

P1

C1 C2

P0

C2

(3)

threat threat

Fig. 5. An argumentation tree (1) and the execution trees (2)(3)

4 Semantics

4.1 Extensions

Following the definition set out by Dung [11], we can define the following concepts
related to arguments.

Definition 15 (conflict-free, admissible). For an argumentation framework
AF = 〈ArgP , ArgC , Atts〉, let A ∈ ArgP ∪ ArgC and S ⊆ ArgP ∪ArgC .
(1) S is conflict-free iff there are no elements A,B ∈ S such that A attacks B.
(2) S defends A iff S attacks each argument that attacks A. The set of arguments
that S defends is denoted by F(S). F is called the characteristic function of an
argumentation framework 〈ArgP , ArgC , Atts〉.
(3) S is admissible iff S is conflict-free and defends all of the elements.

There are several definitions of acceptability, and different extensions exist for
each acceptability.

Definition 16 (extensions). Let E ⊆ ArgP ∪ArgC .
(1) E is a preferred extension iff E is maximal w.r.t. ⊆ admissible set.
(2) E is a grounded extension iff E is the least fixed point w.r.t. ⊆ of the char-
acteristic function F .
(3) E is a stable extension iff E is conflict-free and attacks each argument that
is not included in E.
The following relations hold among these extensions.

Proposition 2. [11,10] (1) There is at least one preferred extension, always a
unique grounded extension, and there may be zero, one, or many stable exten-
sions.
(2) If there is no cyclic structure in an argumentation framework, then there is
a unique stable extension, and the three extensions coincide.

4.2 Dynamic Extension

For an argumentation framework, let Texec be an execution tree for an execution
exec. Let Arg′P and Arg′C be a set of P’s and C’s arguments in Texec, respectively,

74 K. Takahashi and Y. Nambu

and Atts′ be a set of attacks between these arguments. Then, Texec is an argu-
mentation tree for an argumentation framework AFexec = 〈Arg′P , Arg′C , Atts′〉.
We call such AFexec an argumentation framework for exec.

Definition 17 (dynamic extension). For an argumentation framework AF
and its execution exec, let AFexec be an argumentation framework for exec.
Then, the preferred extension for AFexec is dynamic extension for exec of AF ,
and a set of all of the dynamic extensions for executions of AF is the dynamic
extension for AF .

For a given execution exec, we can construct a dynamic extension Eexec for exec
from the corresponding execution tree. For each node, we determine whether it
is included in a dynamic extension by exploring the execution tree from the leaf
nodes in a bottom-up manner using the following rule (Figure 6).

Judgment for inclusion of each node by Eexec

(1) A leaf node is in Eexec.
(2) The node of which all child nodes are not in Eexec is in Eexec.
(3) The node of which child nodes include at least one node that is in Eexec is not
in Eexec.

Fig. 6. Judgment for inclusion of each node

Example 5. (Cont’d) In Figure 5, the argumentation framework for exec1 is
AFexec1 = 〈{P0, C1, P1, C2, P2}, {(C1, P0), (P1, C1), (C2, P0), (P2, C2)}〉, and the
dynamic extension for exec1 is Eexec1 = {P0, P1, P2}. Those for exec2 are
AFexec2 = 〈{P0, C2}, {(C2, P0)}〉 and Eexec2 = {C2}, respectively. The dynamic
extension for AF is E = {E1, E2}.
Proposition 3. Let T1 and T2 be execution trees for executions exec1 and exec2
in AF , respectively, and E1 and E2 be dynamic extensions for exec1 and exec2,
respectively. If T1 is a subtree of T2 such that T1 	= T2, then E1 ⊂ E2.
Proof) Let D1 and D2 be branches in an argumentation tree for AF . Also, let
exec1 be an execution in which branches are executed in the order of D1D2,
and let exec2 be an execution in the order of D2D1. Assume that the number of
nodes included in D1 except for the root node is even. Then, the leaf node of D1

is P’s argument. Therefore, after D1 is executed, D2 should be executed. In this
case, T1 should not be a subtree of T2. Then, the number of nodes included in
D1 is odd. Therefore, E1 does not include the root node. Moreover, for any node
N in D1 other than the root node, it is obvious that if N ∈ E1, then N ∈ E2
holds. Thus, E1 ⊂ E2.
Definition 18 (minimal dynamic extension). Let E1 . . . , En be dynamic ex-
tensions for executions of AF . If Ei such that Ei ⊂ Ej (i 	= j) does not exist,
then Ej is a minimal dynamic extension for AF .

A Semantics for Dynamic Argumentation Frameworks 75

The characteristics of dynamic extensions depend on which agent is in the leaf
node, which agent has a threat, and/or which part of a branch a threat appears.
We first discuss the characteristics of extensions in cases without a threat, and
then investigate how they change with the effect of a threat.

4.3 Case in Which No Threat Exists

First, we explain the case in which both ArgP and ArgC contain no threats.
Let AF = 〈ArgP , ArgC , Atts〉 be an argumentation framework and T be an

initial argumentation tree for AF .
Let DP and DC be sets of branches in which the leaf nodes of T are P’s

arguments and C’s arguments, respectively. Let |DP | = n and |DC | = m. APKC2
proceeds by selecting a branch with an executable node from DP ∪ DC in an
arbitrary order.

One Candidate Subtree. When an argumentation tree has one candidate
subtree, the result is rather simple.

Considering that APKC2 proceeds by turn of P and C, we can classify argu-
mentation trees into three types by focusing on the leaf nodes.

(1) All leaf nodes are P’s arguments.
In this case, all branches D1

P , . . . , D
n
P in DP can be executed in an arbitrary

order. Then, dynamic extensions for all executions consist of all of P’s nodes
appearing in T , and they coincide with each other. They include the root node.
Therefore, a dynamic extension for AF is a singleton.

(2) All leaf nodes are C’s arguments.
In this case, only one branch, Dj

C (1 ≤ j ≤ m) in DC , can be executed. Then,

a dynamic extension for each execution Ej consists of all of C’s nodes in Dj
C .

Therefore, a dynamic extension for AF is E = {E1, . . . , Em}. Each Ej contains
only C’s nodes and is a minimal dynamic extension. Moreover, their intersection
is an empty set.

(3) Leaf nodes consist of both P’s argument and C’s arguments.
In this case, a branch Dj

C (1 ≤ j ≤ m) in DC is executed after executing
several branchesD1

P , . . . , D
k
P (1 ≤ k ≤ n) in DP , or executing no other branches.

Then, a dynamic extension Ekj for each execution consists of C’s nodes in Dj
C

and all of P’s nodes in D1
P ∪ . . . ∪ Dk

P that are not in Dj
C , irrespective of the

execution order of D1
P , . . . , D

k
P .

Let N be
∑n

k=0nCk, i.e., the sum of the number of all possible combinations of
selecting an arbitrary number of elements from DP . Then, a dynamic extension
for AF is E = ∪0≤i≤N,1≤j≤m{Eij}.

76 K. Takahashi and Y. Nambu

Proposition 4. For the above three cases, the number of minimal dynamic ex-
tensions can be defined as follows.
(1) There exists a unique minimal dynamic extension.
(2) There exist |DC | minimal dynamic extensions.
(3) There exist |DC | minimal dynamic extensions.

Moreover, because P only wins in case (1), the following property holds.

Proposition 5. For an argumentation framework, if there is no threat, if the
argumentation tree has only one candidate tree, and if all of its leaf nodes are
P’s arguments, then there never occurs a case in which P wins in one execution
and loses in another execution.

Multiple Candidate Subtrees. When an argumentation tree has multiple
candidate subtrees, the result is rather complicated.

(1) All leaf nodes are P’s arguments.
In this case, all branches in DP that belong to a single candidate subtree

CT can be executed in an arbitrary order. Then, dynamic extensions for all
executions consist of all of P’s nodes appearing in CT , and they coincide with
each other. Therefore, a dynamic extension for an argumentation framework is
a set of these extensions. All of them include the root node.

(2) All leaf nodes are C’s arguments.
In this case, only one branch in DC of each candidate subtree can be executed.

A dynamic extension for each execution consists of only C’s nodes. All of them
are disjoint.

(3) Leaf nodes consist of both P’s argument and C’s arguments.
In this case, several branches both in DP and in DC can be executed, as long

as the turn is kept. A dynamic extension for each execution may include P’s
node and C’s node.

4.4 The Effect of a Threat from P’s Argument to P’s Argument

For an argumentation framework AF = 〈ArgP , ArgC , Atts〉, if at least one of
ArgP and ArgC contains a threat, the threat affects the execution of an argu-
mentation. We can explore the effect in detail by investigating how the dynamic
extensions of argumentations with and without a threat differ in each pattern of
the initial argumentation tree.

For simplicity, we discuss only the case in which an argumentation tree has
only one candidate subtree that has a threat. We also assume that an initial
argumentation tree has only two branches: D1, which includes a threat resource,
and D2, which includes a threat destination. However, the procedure shown here
is applicable to an arbitrary argumentation tree insofar as it has no threat over
multiple candidate subtrees.

A Semantics for Dynamic Argumentation Frameworks 77

First, we focus on the case in which a threat from P’s argument to P’s argu-
ment is contained in AF .

Let Pr and Pd be a threat resource and a threat destination, respectively, and
let C′ be a new node generated by this threat. C′ is added either to the leaf
node or a mid-node of a branch D2 by a threat. Let Ai be a maximal admissible
set for AF of which each element is in Di. It is revised by using the above rule
of judgment for inclusion of each node by Eexec. UPDATE(Di) shows its result.

Hereafter, we use the following notation.

T0: an initial argumentation tree for AF
exec1: execution along the order D1D2

exec2: execution along the order D2D1

Ti: execution tree for execi without a threat
E : the dynamic extension for AF without a threat
Ai: the maximal admissible set for AF each element of which is in Di

T ′
i : execution tree for execi

E ′
i : dynamic extension for execi

E ′: the dynamic extension for AF
NC : the lowest node belonging to both D1 and D2

uppereq(N): a set of nodes higher than or equal to N
loweri(N): a set of nodes lower than N in Di

P0

C C

Pr Pd

C’

P0

C C

Pr Pd

C’C C

(i) (ii)

P0

C C

Pr Pd

C’C

P

P0

C C

Pr Pd

C’C

P0

C C

Ps Pd

C’C C

P

P0

C C

Ps Pd

C C’

(1) (2) (3) (4)

(i) (ii)

Fig. 7. The effect of P’s threat

We can derive E ′ from T0 and threat(Pr , Pd). We compare execution trees with
and without a threat, and discuss how their dynamic extensions change.

(P1) All leaf nodes in T0 are P’s arguments (Figure 7(1))
In this case, T1 and T2 are equivalent.
If T0 has a threat, the execution trees are changed.

78 K. Takahashi and Y. Nambu

There may be two cases depending on the position of Pd.
(i) Pd is a leaf node.
C′ is added as a leaf of D2

In execution exec1, D1 is executed first, C′ is added, then D2 is executed. In
execution exec2, D2 is executed first, it suspends at Pd, then D1 is executed.
Subsequently, C′ is added, and D2 is resumed. Finally, the execution trees of
exec1 and exec2 are equivalent.
T ′
1 = T1 ∪ {C′}. T ′

2 = T2 ∪ {C′}.
The addition of a new node C′ causes a change in the extensions.
E ′
1 = A1 \ uppereq(NC) ∪ UPDATE(D2) ∪ {C′}. E ′

2 = A1 \ uppereq(NC) ∪
UPDATE(D2) ∪ {C′}.

E ′ = {E ′
1}.

Example 6. Figure 8 shows the case of (P1)(i).
Figure 8(1) shows an initial argumentation tree T0. D1 and D2 denote the left

branch and the right branch. A1 = {P0, Pr}. A2 = {P0, Pd}. Figure 8(2) shows
the execution tree T1 (= T2) for execution without a threat.

In contrast, Figure 8(3) shows the execution tree T ′
1 (= T ′

2) for execution with
a threat from Pr to Pd to generate a new node C′. E ′

1 is obtained by updating D2.
Since UPDATE(D2) = {C2}, E ′

1 = E ′
2 = {C′, C2, Pr}. Therefore, the dynamic

extension is E = {E ′
1}.

(1) an initial
 argumentation tree

(2) exetution tree
 without a threat

(3) exetution tree
 with a threat

P0

Pr Pd

C’

C1 C2

threat

P0

Pr Pd

C1 C2

P0

Pr Pd

C1 C2

D1 D2

T1 T2(=) T’1 T’2(=)

Fig. 8. Change of trees and extensions: (P1)(i)

(ii) Pd is a mid-node.
C′ is added as a child node of Pd to generate a new branch D3. In this case,
three executions are possible: the orders of which are D1D2D3, D2D1D3, and
D1D3. A new execution exec3 is generated.
T ′
1 = T1 ∪ {C′}. T ′

2 = T2 ∪ {C′}. T ′
3 = T1 \ lower2(Pd) ∪ {C′}.

E ′
1 = A1 \ uppereq(NC) ∪ UPDATE(D2) ∪ {C′}. E ′

2 = A1 \ uppereq(NC) ∪
UPDATE(D2) ∪ {C′}. E ′

3 = A1 \ uppereq(NC) ∪ UPDATE(D3).
E ′ = {E ′

1, E ′
3}.

A Semantics for Dynamic Argumentation Frameworks 79

Example 7. Figure 9 shows the case of (P1)(ii).
Figure 9(1) shows an initial argumentation tree T0. D1 and D2 denote the

left branch and the right branch. A1 = {P0, Pr}. A2 = {P0, Pd, P1}. Figure 9(2)
shows the execution tree T1 (= T2) for execution without a threat.

In contrast, Figure 9(3) shows the execution trees T ′
1 (= T ′

2) and T ′
3 for ex-

ecutions with a threat from Pr to Pd to generate a new node C′. In T ′
1 (=T2),

since UPDATE(D2) = {P1, C2}, E ′
1 = E ′

2 = {Pr, P1, C2, C
′}, In T ′

3, since
UPDATE(D3) = {C′, C2}, E ′

3 = {Pr, C
′, C2}.

(1) an initial
 argumentation tree

(2) execution tree
 without a threat

(3) execution trees
 with a threat

T1 T2(=) T’1 T’2(=) T’3

P0

Pr Pd

C1 C2

C3

P1

P0

Pr Pd

C1 C2

C3

P1

D1 D2 P0

Pr Pd

C’

C1 C2

C3

P1

threat

D3 P0

Pr Pd

C’

C1 C2

threat

D3

Fig. 9. Change of trees and extensions: (P1)(ii)

(P2) All leaf nodes in T0 are C’s arguments (Figure 7(2))
C′ is added as a child node of Pd, and a new branch D3 is added. However,

C′ is never executed in any execution because of the constraint of turn keeping.
As a result, the dynamic extension does not change, E ′ = E .

(P3) D1’s leaf node is P’s argument, D2’s leaf node is C’s argument
(Figure 7(3))
C′ is added as a child node of Pd, and a new branch D3 is added. A new

execution exec3 is generated.
T ′
1 = T1. T

′
2 = T2. T

′
3 = T1 \ lower2(Pd) ∪ {C′}.

In this case, the dynamic extensions are as follows.
E ′
1 = A1 ∪ A2. E ′

2 = A2. E ′
3 = A1 \ uppereq(NC) ∪ UPDATE(D3).

E ′ = {E ′
1, E ′

2, E ′
3}.

Note that the selected branch must be executed as far as possible, and a node
in the other branch cannot be executed at an arbitrary time.

Example 8. Figure 10 shows the case of (P3).
Figure 10(1) shows an initial argumentation tree T0. D1 and D2 denote the

left branch and the right branch. A1 = {Pr}. A2 = {C3, C2}. Figure 10(2) shows
execution trees T1 and T2 without a threat.

80 K. Takahashi and Y. Nambu

In contrast, Figure 10(3) shows execution trees T ′
1, T

′
2 and T ′

3 with a threat
from Pr to Pd to generate a new node C′. Note that a new execution exec3 is
generated. E ′

1 = A1 ∪ A2 = {Pr, C3, C2}. E ′
2 = A2 = {C3, C2}. E ′

3 is obtained by
updating D3. Since UPDATE(D3) = {C′, C2}, E ′

3 = {Pr, C
′, C2}. Therefore,

the dynamic extension is E = {E ′
1, E ′

2, E ′
3}.

(1) an initial argumentation tree (2) execution trees
 without a threat

T1 T2

P0

Pd

C2

C3

P0

Pr Pd

C1 C2

C3

(3) execution trees
 with a threat

P0

Pr Pd

C1 C2

C3
T’1

threat

P0

Pd

C2

C3
T’2 T’3

P0

Pr Pd

C’

C1 C2

threat

D3

P0

Pr Pd

C1 C2

C3

D1 D2

Fig. 10. Change of trees and extensions: (P3)

(P4) D1’s leaf node is C’s argument, D2’s leaf node is P’s argument
(Figure 7(4))

There are two possible cases, depending on the position of Pd: (i) Pd is a leaf
node and (ii) Pd is a mid-node.

However, C′ is never executed in any execution because of the constraint of
turn keeping. As a result, the dynamic extension does not change, E ′ = E in
either case.

4.5 The Effect of a Threat from C’s Argument to C’s Argument

Next, we focus on the case in which a threat from C to C is contained in AF .
Let Cr and Cd be a threat resource and threat destination, respectively, and

let P ′ be a new node generated by this threat.

A Semantics for Dynamic Argumentation Frameworks 81

(i) (ii)

(2)(1) (4)(3)

(i) (ii)

P0

Cr Cd

P’P P

P0

Cr Cd

P’

P0

Cr Cd

P’

C

P P

Cr

P0

Cr Cd

P’P

C

P

P0

Cr Cd

P P’

P0

Cd

P’P

Fig. 11. The effect of C’s threat

(C1) All leaf nodes in T0 are P’s arguments (Figure 11(1))
P ′ is added as a child node of Cd to generate a new branch D3.
T ′
1 = T1. T

′
2 = T2. T

′
3 = T1 \ lower2(Cd) ∪ {C′}.

In this case, a new execution exec3 is generated. Three executions are possible:
D1D2, D2D1 and D1D3. Dynamic extensions for these executions are as follows.

E ′
1 = E ′

2 = A1 ∪ A2. E ′
3 = A1 \ uppereq(NC) ∪ UPDATE(D3).

E ′ = {E ′
1, E ′

3}

(C2) All leaf nodes in T0 are C’s arguments (Figure 11(2))
There are two possible cases, depending on the position of Pd: (i) Cd is a leaf

node, and (ii) Cd is a mid-node.
With regard to the dynamic extension, E ′ = E in either case.

(C3) D1’s leaf node is P’s argument, D2’s leaf node is C’s argument
(Figure 11(3))

There are two possible cases, depending on the position of Pd.
(i) Cd is a leaf node.
P ′ is added as a leaf of D2

T ′
1 = T1 ∪ {P ′}. T ′

2 = T2.
E ′
1 = A1 \ uppereq(NC) ∪ UPDATE(D2). E ′

2 = A2.
E ′ = {E ′

1, E ′
2}.

(ii) Cd is a mid-node.
P ′ is added as a child node of Cd to generate a new branch D3.
T ′
1 = T1 ∪ {P ′}. T ′

2 = T2. T
′
3 = T1 \ lower2(Cd) ∪ {P ′} .

A new execution exec3 is generated. Three executions are possible: in execu-
tion exec1, D1 is executed first, C′ is added, D2 is executed, and D3 is executed.
In execution exec2, D2 is executed first and terminates because of the constraint
of turn keeping. In execution exec3, D1 is executed first, C′ is added, then D3

is executed.

82 K. Takahashi and Y. Nambu

The dynamic extensions for these executions are as follows:
E ′
1 = A1 \ uppereq(NC) ∪ UPDATE(D2) ∪ {P ′}. E ′

2 = A2.
E ′
3 = A1 \ uppereq(NC) ∪ UPDATE(D3).

E ′ = {E ′
1, E ′

2, E ′
3}.

(C4) D1’s leaf node is C’s argument, D2’s leaf node is P’s argument
(Figure 11(4))
P ′ is added as a child node of Cd, and a new branch D3 is added.
With regard to the dynamic extension, E ′ = E .

4.6 Properties

It is not sufficient simply to consider updating each branch when changes in
extensions are considered. It is interesting to note that even if a new node is
added by a threat, it does not always affect the extension. This is due to the
constraint of turn keeping and the fact that a new branch is not executed until
all of the executable nodes in the current branch are executed.

The following relation holds between a dynamic extension and the win/loss
of an argumentation.

Let E1, . . . , En be dynamic extensions for executions for an argumentation
framework AF and E be a dynamic extension for AF .

1. If each Ei consists of only P’s arguments, P dynamically wins. In this case,
E1, . . . , En coincide and include the root node.

2. If each Ei consists of only C’s arguments, every one of P’s arguments in an
argumentation framework is attacked in any execution.

3. If each Ei consists of both P’s and C’s arguments, P loses the argumentation.
In this case, each Ei does not contain the root node, and a minimal dynamic
extension that consists of all of C’s arguments exists.

5 Related Works

The abstract argumentation framework proposed by Dung [11] does not put or-
ders of arguments and not include the idea of win/loss of an argumentation.
It is represented as a graph structure in which nodes and edges correspond to
arguments and attacks, respectively. On the other hand, in several studies on
dialogue or dialect, argumentation has been represented in a tree form that iden-
tifies the proposal statement as the root node, gives an order to arguments, and
defines the concept of win/loss of an argumentation. Amgoud et al. considered
an argumentation a dialogue game that could be represented as an AND/OR
tree and gave a semantics to indicate whether the argument corresponding to
the root node was accepted [1]. They defined a win as a situation where a solu-
tion subtree exists in which all of the leaves are P’s arguments. Dunne proposed
a “dispute tree” on which subsequent execution of all branches is considered [10].

A Semantics for Dynamic Argumentation Frameworks 83

However, the revision of an agent’s knowledge base was not considered there, al-
lowing presented arguments to add new information to the opponent’s knowledge
base. Garćıa et al. also represented an argumentation framework as a tree, called
a dialectical tree [13]. There, an argumentation formalism was given based on de-
feasible logic programming (DeLP) to decide between contradictory goals. They
presented an algorithm to determine whether an argument corresponding to the
root node is self-defendable. Such an argument is called “warranted.” The win
in argumentation in APKC2 is identical to the concept of “warranted.” Later,
Modgil proposed the Extended Argumentation Framework (EAF), an extension
of an argumentation framework that introduced the concept of a meta-attack,
that is, an attack to an attack, and discussed its semantics [16].

Moguillansky et al. considered the treatment of DeLP by an argumentation
framework [17]. Their treatment made belief change theory suitable for an argu-
mentation system based on DeLP. They presented an algorithm for judging the
rules of which are selected from a given set of defeasible rules such that an argu-
ment corresponding to the root node is warranted. Their work can be considered
as one handling argument theory change because an argumentation framework is
changed depending on the set of rules that are selected. However, the aim of their
work was to construct an argumentation framework that makes the root node
warranted, not to consider the effect(s) of the execution of an algorithm. For
this reason, they did not consider the timing of applying the addition/deletion
of rules. In contrast, in our dynamic argumentation framework, we introduce
the concept of an execution tree and insist that the execution creates a new
argument.

While in the approaches based on DeLP new arguments and attacks are de-
termined by formulas included in the rules, Cayrol et al. investigated argument
theory change at a more abstract level by treating only the addition of nodes
in an argumentation graph [5]. They investigated how acceptable arguments are
changed when an argument is added. The aim of their research was to provide a
formal analysis of changes to argumentation; the contents of the additional ar-
guments and the reasons for their addition were beyond the scope of their study.
Cobo et al. proposed an argumentation framework in which available arguments
change depending on time interval [8]. In their work, these intervals were given
in advance, and they did not consider the mechanism by which an argument
causes the generation of a new argument. In contrast, we focused specifically on
the effect of knowledge gained from presented arguments, which is essential in
actual argumentation.

Several studies have been conducted on argumentation semantics. Dung pro-
vided a semantics for a given abstract argumentation framework based on ac-
ceptability [11]. He defined several acceptable sets, depending on the range of
strength against an attack. Coste-Morquis et al. argued that it is controversial
to include both agents’ arguments in an extension because this would indicate
an indirect attack [9]. They defined a new semantics, called “prudent seman-
tics,” which does not allow such cases, and compared this to Dung’s semantics.

84 K. Takahashi and Y. Nambu

Other semantics have also been proposed, such as ideal semantics [12], semi-
stable semantics [6], and others. Boroni et al. compared these types of semantics
from the viewpoint of skepticism [3].

All of these semantics involved argumentation systems from a static viewpoint,
whereas our proposed semantics is suitable for a dynamic argumentation system.

6 Conclusion

In this paper, we defined a new semantics that can fit a dynamic argumentation
framework. In this framework, arguments and attacks are dynamically altered
by a threat as the argumentation proceeds. We defined a dynamic extension for
each execution of an argumentation and defined the dynamic extension for an
argumentation framework as a set of these extensions. In addition, we discussed
how these extensions are changed by the effect of a threat and investigated
their relationships and properties. Interestingly, a threat does not always affect
the outcome of the extension it changes. Although we restricted our analysis to
the case in which a threat exists in only a single candidate subtree, it should be
straightforward to extend the semantics to include cases in which a threat occurs
over multiple candidate subtrees. We are currently formalizing this extended
version.

We are also investigating the relationship of this system to the JC algorithm
that we proposed previously [20], which is an algorithm for judging the win/loss
of an argumentation.

References

1. Amgoud, L., Parsons, S., Maudet, N.: Arguments, dialogue, and negotiation. In:
ECAI 2000, pp. 338–342 (2000)

2. Amgoud, L., Vesic, S.: Repairing preference-based argumentation frameworks. In:
IJCAI 2009, pp. 665–670 (2009)

3. Baroni, P., Giacomin, M.: Comparing Argumentation Semantics with Respect to
Skepticism. In: Mellouli, K. (ed.) ECSQARU 2007. LNCS (LNAI), vol. 4724, pp.
210–221. Springer, Heidelberg (2007)

4. Bench-Capon, T.J.M., Dunne, P.: Argumentation in artificial intelligence. Artificial
Intelligence 171, 619–641 (2007)

5. Cayrol, C., de St-Cyr, F.D., Lagasquie-Shiex, M.-C.: Change in Abstract Argu-
mentation Frameworks: Adding an Argument. Journal of Artificial Intelligence
Research 38, 49–84 (2010)

6. Caminada, M.: Semi-stable semantics. In: COMMA 2006, pp. 121–130 (2006)
7. Chesnevar, C.I., Maguitman, A., Loui, R.: Logical models of argument. ACM Com-

puting Surveys 32(4), 337–383 (2005)
8. Cobo, M.L., Martinez, D.C., Simari, G.R.: An approach to timed abstract argu-

mentation. In: NMR 2010, Workshop on Argument, Dialog and Decision (2010)
9. Coste-Marquis, S., Devred, C., Marquis, P.: Prudent semantics for argumentation

frameworks. In: ICTAI 2005, pp. 568–572 (2005)
10. Dunne, P.E., Bench-Capon, T.J.M.: Coherence in finite argument system. Artificial

Intelligence 141(1-2), 187–203 (2002)

A Semantics for Dynamic Argumentation Frameworks 85

11. Dung, P.M.: On the acceptability of arguments and its fundamental role in non-
monotonic reasoning, logic programming and n-person games. Artificial Intelli-
gence 77, 321–357 (1995)

12. Dung, P.M., Mancarella, P., Toni, F.: A dialectic procedure for sceptical,
assumption-based argumentation. In: COMMA 2006, pp. 145–156 (2006)

13. Garćıa, A., Simari, G.: Defeasible logic programming: an argumentative approach.
Theory and Practice of Logic Programming 4(1), 95–138 (2004)

14. Garćıa, A., Chesnevar, C., Rotstein, N., Simari, G.: An abstract presentation of
dialectical explanations in defeasible argumentation. In: ArgNMR 2007, pp. 17–32
(2007)

15. Hamblin, C.: Fallacies, Methuen (1970)
16. Modgil, S.: Reasoning about preferences in argumentation frameworks. Artificial

Intelligence 173(9-10), 901–1040 (2009)
17. Moguillansky, M.O., et al.: Argument theory change applied to defeasible logic

programming. In: AAAI 2008, pp. 132–137 (2008)
18. Prakken, H.: Combining skeptical epistemic reasoning with credulous practical rea-

soning. In: COMMA 2006, pp. 311–322 (2006)
19. Okuno, K., Takahashi, K.: Argumentation system with changes of an agent’s knowl-

edge base. In: IJCAI 2009, pp. 226–232 (2009)
20. Okuno, K., Takahashi, K.: Argumentation System Allowing Suspend/Resume of

an Argumentation Line. In: McBurney, P., Rahwan, I., Parsons, S. (eds.) ArgMAS
2010. LNCS, vol. 6614, pp. 248–267. Springer, Heidelberg (2011)

21. Rahwan, I., Simari, G. (eds.): Argumentation in Artificial Intelligence. Springer
(2009)

	A Semantics for Dynamic Argumentation Frameworks
	Introduction
	Informal Description for Dynamic Argumentation
	Dynamic Argumentation System
	Basic Concepts
	Execution of an Argumentation

	Semantics
	Extensions
	Dynamic Extension
	Case in Which No Threat Exists
	The Effect of a Threat from P's Argument to P's Argument
	The Effect of a Threat from C's Argument to C's Argument
	Properties

	Related Works
	Conclusion
	References

