
An Intelligent Access Dispatching Mechanism
Using Multiagent Framework

KAZUKO TAKAHASHI
School of Science&Technology

Kwansei Gakuin University
2-1, Gakuen, Sanda, 669-1337, JAPAN

email: ktaka@kwansei.ac.jp

CHIAKI KAWASHIMA∗

Graduate School of Science
Kwansei Gakuin University

2-1, Gakuen, Sanda, 669-1337, JAPAN
email: chiaki kawashima@hcc5.bai.ne.jp

ABSTRACT
In this paper, we describe the access dispatching mech-
anism in which access requirements from clients are re-
garded as autonomous agents. Each agent can observe only
its local environment, and sends a message to get more
information. Periodically, it computes the current best
place, moves to the place, and sends the message telling the
change of the environment to its neighborhood. The mech-
anism is robust against the change of environment, enables
flexible access dispatching that increases performance and
suppress computation and communication costs. We have
implemented printers controlling system equipped with this
mechanism, and performed simulation to show the effec-
tiveness of the mechanism.

KEY WORDS
intelligent agents, cooperative AI systems, access dispatch-
ing

1 Introduction

Recent progress of mobile computing technology and en-
hancement of global communication infrastructure have
brought about much attention to the mechanism such that
multiple entities sharing distributed resources coordinate
with each other to accomplish various jobs efficiently[1].
On realizing this mechanism we often face the problems of
communication overhead and load balancing. One of the
essential technologies to the efficient realization is access
dispatching to the shared resources.

When multiple clients require to access a single re-
source, few problems may occur, since the requirements
are put in order using a certain method. However, when al-
ternative resources are available elsewhere, the problem is
serious: if most of requirements are centered to a specific
node, the performance of the total system would decrease.

For example, when you would like to use a network
printer, if one printer is busy, it is more convenient to use
another printer; when you would like to download an ap-
plication software onto your computer, you may select a
less-congested mirror site rather than the congested one to
get the software fast.

∗Currently, Nissay Information Technology Co.,Ltd.

Currently, lots of access dispatching mechanisms for
load balancing have been developed and used [2][3][4].
Some of them are equipped with the intelligent control
mechanisms: tiny task or urgent one is set to break in for
immediate access, or tasks are removed from the site where
fault has occurred.

However, once the requirement by a client is added
to a queue of some node in a network, it never moves to
another node, unless an unexpectable event such as a fault
occurs. Therefore, when a big urgent task has broken in
the queue of some node, it may take a long time for the
predominant tasks to get their turns, despite that there ex-
ists another available resource. If there exists a server (or
servers) which collects the requirements from clients, and
which throws them one by one to the resource when it is
ready, such a situation is avoidable. However, in such a
case, the load of the server is so heavy, and less robust since
it may break down.

In this paper, we propose an access dispatching mech-
anism in which access requirements from clients are re-
garded as autonomous agents. Our goal is to achieve high
performance with low cost in the environment where mul-
tiple clients share multiple resources located at distributed
nodes in a network, such as network printer and download
site.

The mechanism is based on the multiagent
framework[5][6]. Each agent only knows its immedi-
ate successor in the queue of a resource. When more
information is needed, it sends other agents requirement
messages to get it. Periodically, each agent selects the
most appropriate destination at the instant, moves to the
destination, and sends the message telling the change of
the environment to its immediate successor. Receiving the
update message, the agent updates its local information as
well as sends the message telling the change of the envi-
ronment with its own change to its immediate successor. In
such a way, messages of updating are passed sequentially,
and finally, all the agents have new information.

Using agents enables more flexible access dispatch-
ing and higher performance of the total system, and it en-
sures the robustness against the change of the environment.
On the other hand, if large amount of communication is
needed to grasp the change of the environment, communi-

411-138 166

debbie




high

middle

low

resource resource resource

clients

resources

task
agents

resource
agents

Figure 1. System configuration

cation overhead is too big to be ignored. In our mechanism,
the message consists of task ID, waiting time and action,
not including the whole state. Moreover, the number of oc-
curring messages is small and the computation of agent is
also simple. Therefore, the communication cost is low.

We show a printers controlling system equipped with
this mechanism. We have implemented the system and per-
formed a simulation. The result shows the effectiveness of
the mechanism.

The paper is organized as follows. In section 2, we
describe the idea and behavior of the access dispatching
mechanism. In section 3, we show a printers controlling
system with this mechanism and show the result of sim-
ulation. In section 4, we discuss the effectiveness of the
mechanism. And in section 5, we show the conclusion and
future works.

2 The Mechanism for Access Dispatching

2.1 The Idea

The mechanism which we propose here is based on the idea
of multiagent with incomplete information.

The system consists of resource agents and task
agents. These agents cannot see the whole state, but have
only their local information. Figure 1 shows the configura-
tion of the system.

Each resource has a queue in which task agents are
waiting for an access to the resource. A resource agent
stays at each resource watching the state of the resource,
and when special events such as fault and restart occur, it
recognizes them. It connects the resource and the top of the
task agents in the queue by exchanging messages.

A queue of a resource consists of three parts depend-
ing on the priority. The part of high priority is processed
first, the part of middle priority is second, and the part of
low priority is the last. The tasks in the same part are pro-
cessed in a first-in-first-out manner.

high

middle

low

middle

resource
resource

update

Figure 2. Creation of a task agent

A task agent is created at each time a client requires,
and when the task is completed, it disappears. Each task
agent can observe only its immediate successor in the
queue. When needed, it asks other agents to give informa-
tion, updates its local information, and decides its action to
be taken next. A task agent has, as attributes, its priority,
its own size and the ID of the physically/logically nearest
resource from it.

2.2 The Procedure

Let n be the number of available resources located at some
node.

When a client requires, a task agent A whose priority,
size and the ID of the nearest resource are p, s and r, re-
spectively, is newly created. It asks all the resource agents
the current waiting time. Then, the resource agent asks the
current waiting time to the task agent located in the last po-
sition in the part of the corresponding priority of the queue.
Receiving the answer, the resource agent sends it to A. A
decides the current best resource by considering waiting
time, distance from the resource and the priority. Then, it
moves to the last position in its priority part of the queue
of the selected resource, updates its local information, and
sends the message of requirement of updating the waiting
time to its immediate successor suc(A) (Figure 2). If there
is no successor, suc(A) is none.

In the followings, f denotes a function which com-
putes the estimated time for processing the task of size s at
node k.

the inference of task agent A at node S
(initially S is none)
T← current best resource(A)
If T\=S

move(A,S,T) // movement from S to T

167



decision of current best node for A
current best resource(A) {
For each k (1 ≤ k≤ n),

B← get last(k,p)
// let B be the last agent of priority p

wait time(k,A)← wait time(k,B) + f(k,A)
// compute waiting time

eval(k)← comp appr(wait time(k,A),p,r)
// evaluation of node k

T←max of eval(k)
// select the best node

return T
}

movement of A from S to T
move(A,S,T) {
If S\=none then

remove last(A,S,p)
// update the local information of S

ask suc(A) to do dec time(f(S,A),A)
C← the agent that satisfies suc(C)=A
ask C to do update position(suc(A))
// update the local information
// of the previous position

If T\=none then
B← get last(T,p)
put last(A,T,p)
// update the queue of T

suc(A)← suc(B) // move
wait time(T,A)← wait time(T,B) + f(T,A)
// update its own waiting time

ask suc(B) to do add time(wait time(T,A),A)
// update the local information
// of the new position

ask B to do update position(A)
}

Periodically, the task agent re-computes the current
best resource, and moves to it, if necessary. At the move-
ment, it tells its departure to the current immediate succes-
sor, with the message of requirement of updating the wait-
ing time. After the movement, it updates its own waiting
time, and sends the message of requirement of updating the
waiting time to the new immediate successor (Figure 3).

When a task agent which is not none receives the
message of requirement of updating the waiting time, it
updates its own waiting time and sends the message of re-
quirement of updating the waiting time with its own change
to the immediate successor. The messages are passed se-
quentially to the task agent in the last position of the queue
and the update of the waiting time for all the task agents in
the queue has been accomplished.

resource resource resource resource

update

update

Figure 3. Movement of a task agent

task agent B receives the message
update position(A)

(another agent comes as its immediate successor)
suc(B)← A

task agent B receives the message
add time(wait time(T,A),A)

(another agent breaks in)
wait time(T,B)← wait time(T,A) + f(T,B)

// update its own waiting time
ask sub(B) to do update(wait time(T,B),B)

// update the local information

task agent B receives the message
dec time(f(T,A),A)

(the agent of its immediate predecessor has left)
wait time(T,B)← wait time(T,B) − f(T,A)

// update its own waiting time
ask suc(B) to do dec time(f(T,B),B)

// update the local information

A resource agent watches the task ID currently pro-
cessed, and the state of the resource, namely, whether the
normal processing is being done. When an access to the
resource is broken because of fault, for example, the corre-
sponding resource agent sets the waiting time to unknown
and tells it to the agent at the top of the queue. In addition,
when an access becomes available again, it sends the mes-
sage of resetting the waiting time to the agent at the top of
the queue.

resource agent at fault
send update time(unknown)

to the task agent at the top of the queue

resource agent at restart
send add time(0,resource)

to the task agent at the top of the queue

When a task agent receives unknown, it recompute
to decide the current best resource, and moves to it, if nec-
essary. Agents whose size is large with the low priority

168



may remain. (Note that the break of access is assumed to
be eventually released after some interval.)

task agent B receives the message
update time(unknown)

wait time(T,B)← unknown
T← current best resource(B)
If T\=S

move(A,S,T) //movement from S to T
ask suc(B) to do update time(unknown)

When a task agent succeeds in accessing a resource
and the task has been completed, then it tells its departure
to the immediate successor, and after informing the client
of its success, it disappears.

3 Printers Controlling System

We show a printers controlling system which has the mech-
anism described in the previous section.

Consider an office where several members are work-
ing, and they send printing requirements frequently. The
members want to get their own printed documents from the
nearest printer as fast as they can. When the nearest printer
is busy, it is generally preferable to get the printed docu-
ment fast even if it comes out from a far printer for a large
urgent job, and to get it from the nearest printer for a small
non-urgent job. Moreover, we hope all the printers may
work with little idling time as possible as they can. Then,
our goal is: the printers nearest from each client are used
at a high rate, and the whole job is accomplished as fast as
possible.

3.1 Simulation

We have implemented the printers controlling system using
JAVA, and performed the simulation. A printer is regarded
as a resource and a printing job is regarded as a task.

Figure 4 shows the screen-shot of the simulation. In
this figure, the columns above each printer show the queue
of task agents. Each block of the column is painted with
different color depending on its priority. The height of a
block corresponds to the size of each task. The figures be-
low each printer show the remaining pages of the current
task of printing. wait denotes that there are no task agents
in the queue.

Figure 4. Screen-shot of simulation

low

20%

middle

20%

high

60%

(a) priority

1

35

10

30
50

25%

25%25%

15%

5%
5%

(b) size

Figure 5. The rate of simulation data

without with
fault fault

performance rate 111.7 128.3
achievement rate[high] 58.4 52.7
achievement rate[mdl] 77.9 67.0
achievement rate[low] 98.0 67.9

Table 1. Average number of performance rate(%) and
achievement rate(%)

We perform the simulation under the following con-
ditions.

1. Six printers and six clients are set.

2. All the printers are assumed to have the same perfor-
mance (the same number of pages are printed out at a
unit time).

3. The same number of requirements occur from all the
clients at an arbitrary interval, and the total amount of
the requirements is 100.

4. Size and priority of each task are set at random, ac-
cording to the rate shown in Figure 5.

5. Every printer breaks down at random and after a cer-
tain interval, it restarts.

6. No delay caused by task movement is assumed.

We use two systems: (A) the controller with the new
mechanism proposed in this paper and (B) a normal con-
troller without re-computation nor re-movement. For these
systems, simulation with given 30 data are performed for
the case without fault and the case with fault, respectively.

The average values obtained as a result of 30 simula-
tions are shown in Table 1. Performance rate denotes the
rate tA/tB where tA and tB are the total amount time of
printing for (A) and (B), respectively. Achievement rate
denotes the rate of the tasks printed out from the nearest
printers out of 30 data for (A).

169



3.2 Evaluation

As performance rate is above 100%, the proposed mecha-
nism can decrease the total amount time of printing. About
17% difference appears comparing the case with and with-
out faults. This means that the proposed mechanism is
enough adaptive for the change of the environment. As for
(B), tasks are loaded to a specific printer for some data. In
such a case or in the case faults of printers frequently occur,
the performance is much lower than that of (A).

In the case without fault, the rates of the task agents
with high, middle and low priority that select the nearest
printer are 40%,20% and 2%, respectively. This result re-
flects the setting that waiting time is taken to be more sig-
nificant than distance, for a task with higher priority. Con-
sidering that the performance of system (A) is about 12%
higher than that of system (B) even if far printer is selected,
we should admit this setting.

In the case with fault, the achievement rates for (A)
are low. It is because the task agents are forced to move to
the other printer when a fault occurs. Instead, the perfor-
mance is about 28% higher than that of (B).

Furthermore, although the average number is shown
in Table 1, not a small difference between the results ap-
pears depending on each data. In the case without fault, the
number of the task agents with high priority which select
the nearest printer is big for some data, and small for other
data. On the other hand, almost all of task agents with low
priority select the nearest printer. In the case with fault, the
numbers of the task agents which select the nearest printer
are quite different depending on the frequency of fault oc-
currence.

If we choose the parameters of the function for evalu-
ating the selected node, then we can obtain higher achieve-
ment rate. Moreover, a period of re-computation should be
adjusted for the number of tasks and resources, and the av-
erage size of tasks, so that we can take advantage of this
mechanism.

4 Discussion

4.1 The Characteristics of the Mechanism

In this mechanism, it is allowed that the task agents with
a long waiting time move to other queue, and that the task
agents with higher priority are broken in. It causes the wait-
ing time of task agents to be changed, therefore the agents
are forced to re-compute the current appropriateness of re-
sources using new information. It enables more flexible
access dispatching.

The outstanding characteristics of this mechanism is
that it is not a server (resource agent) but a task agent that
determines the destination. Although there are several stud-
ies on access dispatch in the distributed environment such
as network printer or download server, no mechanism has
been proposed in which access requirements are consid-
ered as autonomous agents. We use autonomous agents

which are adapted to the change of environment. In addi-
tion, our mechanism is designed to suppress the computa-
tion and communication costs and to increase the perfor-
mance of the whole system. An agent receives the message
of task ID, waiting time and action, as an information on
the change of the environment. Moreover, the number of
occurring messages is small, the computation of an agent
is also simple. Since an agent itself has an access require-
ment and the mechanism for computing the waiting time
and deciding the best position, traffic of its movement is lit-
tle enough to be ignored. Hence, low communication cost
is realized.

4.2 Dispatching Accesses to Download Site

The mechanism can be applied to dispatching accesses to
download site. When multiple clients require to download
a certain application software, the requirements should be
dispatched to the nearest (i.e.,short route, small number
of hops) mirror sites. At that time, it is more preferable
to take the estimated time for downloading and priority
of the requirement into consideration. Generally, a server
(or servers) takes intelligent dispatching control, but using
agents can provide more flexible and more robust system.

4.3 The Possibility of Other Applications

We have studied the system in which multiagent with in-
complete information cooperate with each other to solve a
problem. Especially, we have interested in the case in that
actions of some agents effect on the environments of the
others. Such a type of problem is more difficult than a sim-
ple resource assignment problem[7][8][9], since an action
of an agent may restrict on the next action of another agent.
We have proposed the mechanism in which no manager
process that can grasp the whole situation of the world ex-
ists, and agents exchange simple messages. It can suppress
the computation and communication costs and increase the
performance of the whole system. We have discussed the
mechanism by taking a block loading problem as a case
study [10]. In case of blocks, lower block agent cannot
move nor receive another block agent on it when there is
some block agent on it. On the other hand, as for the print-
ers controlling system discussed in this paper, there is no
restriction on moving of task agents from one queue to an-
other queue. Both the systems have the same mechanism
in the sense that autonomous agents which move from one
place to another cooperate to solve the problem efficiently,
but a block loading problem is an example with stronger
restriction.

We can apply our mechanism to the treatment of mo-
bile process with security by considering the security as a
restriction of process movement. Moreover, it is sometimes
more preferable to set the destination not as an absolute
point of the node name, but as a relative point, such as, the
same node with a specific resource. Our mechanism can

170



provide the assignment of relative point.

5 Concluding Remarks

In this paper, we have described the mechanism in which
an access requirement is considered to be an autonomous
agent when multiple clients share multiple resources.

The mechanism has the following advantages:

1. robustness against the change of environment

2. flexible access dispatching to increase performance

3. low computation and communication costs

We have implemented printers controlling system
with the mechanism, and performed simulation to show its
effectiveness.

In future, we are considering to apply the mechanism
for controlling processes with security in distributed sys-
tems and controlling multiple robots.

Acknowledgements

This research is supported by KAKENHI14580434.

References

[1] Bellavis,P. and Magedanz,T. Middleware technologies:
CORBA and mobile agents. Coordination of Internet
Agents, Omicini,A, Zambonelli,F. Kluch,M. and Tolks-
dorf,R.(eds.) 110–152. Springer. 2001.

[2] CISCO: Local Director. http://www.cisco.com.

[3] IBM: Interactive Network Dispatcher.
http://www.ibm.com.

[4] LINUX: Linux Virtual Server Project.
http://www.linuxvirtualserver.org/.

[5] Weiss, G., ed. Multiagent Systems. The MIT Press.
1999.

[6] Wooldridge, M. An Introduction to Multiagent Sys-
tems. John Wiley and Sons, LTD. 2002.

[7] Decker, K. S. TAEMS: A framework for environ-
ment centered analysis & design of coordination mech-
anisms. Foundations of Distributed Artificial Intelli-
gence, chapt 16. 429–448. 1996.

[8] Shehory,O. and Kraus,S. Task allocation via coalition
formation among autonomous agents. Proceedings of
the Fourteenth International Joint Conference on Artifi-
cial Intelligence Montreal, Canada, 1995. 655–661.

[9] Nair,R. and Tambe, M and Marsella,S. Role allocation
and reallocation in multiagent teams: Towards a prac-
tical analysis. Proceedings of The Second International
Joint Conference on Autonomous Agents and Multiagent
Systems. Melbourne, Australia, 2003. 552–559.

[10] Kawashima, C., and Takahashi, K. A problem solving
by multiagent in the environment with dense interaction.
Proceedings of 45th Annual Conference of Information
Processing Society of Japan, Tokyo, Japan, 2003. 301–
302. volume 2. (In Japanese).

171


