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Abstract

We present an extended PLCA which can represent a con-
vexity of an object qualitatively. PLCA is based on the
simple components: points(P ), lines(L), circuits(C) and
areas(A), and the entire figure is represented as a combina-
tion of these components. The entire space is considered to be
divided into disjoint regions, and the connection patterns of
regions can be distinguished. We extend PLCA by utilizing
a convex-hull of each area to give a qualitative shape repre-
sentation. We formalize our method, present an algorithm to
generate the symbolic expression from the given figure, and
discuss the properties that should be satisfied by this expres-
sion. Our goal is to represent not only the shape of the outer
circuit of a single region, but that of the boundaries between
regions.

1. Introduction
Qualitative Spatial Reasoning(QSR) is a method that treats
images or figures qualitatively, by extracting the information
necessary for a user’s purpose such as mereological relation-
ships, relative positional relationships, relative size between
regions (Cohn and Hazarika 2001; Stock 1997). In QSR
systems, figures are represented not numerically but sym-
bolically, so that the amount of data and computation can be
reduced.

RCC (Randell and Cui 1992) is a logical theory that con-
siders a space as a set of regions, in which the entire figure
is represented in the form of a set of binary relations of re-
gions. 9-intersection in another method which uses a ma-
trix to show the relationships of objects (Egenhofer 1991;
Egenhofer and Franzosa 1991; 1995). PLCA is a framework
for qualitative spatial reasoning (Takahashi and Sumitomo
2005). It is based on the simple components: points(P ),
lines(L), circuits(C) and areas(A), focusing on the con-
nection patterns of regions. Pairs of areas, circuits or lines
never cross. Intuitively, the entire space is divided into dis-
joint regions. Consider, for example, the figure shown in
Figure 1. It can be explicitly represented that two objects
are touched by two points in PLCA, while only the property
that two objects have the common part is represented in the
other QSR methods.
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Figure 1: Objects touched by two points

Figure 2: The same figures

However, only the characteristics of the connection pat-
terns can be represented and there is no information on
shapes. For example, two figures in Figure 2 are regarded
as the same one, since both of which show two objects that
are connected with a line.

Shape representation is necessary in many fields: recog-
nizing maps or geologic changes, designing and building ob-
jects, using Geographic Information Systems (GIS).

Qualitative shape representation are studied in several
works in QSRs. However, most of them focused on the
shape of a single object, and they do not handle the shapes of
multiple objects connected with each other (Figure 3). For
example, consider the shapes of the boundaries of countries.
Most of boundaries of European countries are curved while
those of African countries are straight. We have to express
not only the shape of a single boundary, but also the con-
nection manner of these boundaries. In this paper, we treat
these problems, and give a solution.

We extend PLCA so that it has the information of convex-
hull for each area. The convexity of each object is repre-
sented using its convex-hull. We extract the difference part
between the area and its convex-hull as concavity, and take
recursively convex-hull of this part. This approach can ex-



Figure 3: Figures including multiple objects

Figure 4: Hierarchical representation of convexity

press the shapes of regions on the detailed level (Figure 4).
Our goal is to represent not only the shape of the boundaries
of a single object, but that of the boundaries among objects
and represent the convexity of areas.

We present an algorithm for generating a PLCA+ expres-
sion from a given figure in a two-dimensional plane, and
discuss the properties the expression satisfy. We also dis-
cuss the expressive power of PLCA+.

This paper is organized as follows. In section 2, we
present the formal definition of PLCA+, an extended PLCA
expression, and the conditions that are to be satisfied. In
section 3, we describe an algorithm from a given figure in a
two-dimensional plane to generate the symbolic representa-
tion, and show the properties to be satisfied. In section 4, we
compare our approach with the other works, and discusses
the ability of PLCA+. Finally, in section 5, we show the
conclusion.

2. Definition of Extended PLCA
Definition of Classes
PLCA has four basic components: points(P ), lines(L),
circuits(C) and areas(A) (Figure 5). We add a new com-
ponent subPLCA to represent the shape of convexity of an
area.

Point is defined as a primitive class.
Line is defined as a class that satisfies the following condi-

tion: for an arbitrary instance l of Line, l.ps is a pair [p1, p2]
where p1, p2 ∈ Point. A line has an inherent orientation.
When l.ps = [p1, p2], l+ and l− mean [p1, p2] and [p2, p1],
respectively. l∗ denotes either l+ or l−, and l∗re denotes the
line with the inverse direction of the direction of l∗. Intu-
itively, a line is the edge connecting two (not always differ-
ent) points. No two lines are allowed to cross. Note that
multiple lines may have the same pair of points. In Fig. 6(a),
the arrows denote the orientation of the lines. All of the lines
l1.ps, l2.ps and l3.ps are defined to be [p1, p2], but they are
distinguished by the circuits to which they belong.

(a) Point and Line (b) Circuit and Area

Figure 5: PLCA components
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Figure 6: Multiple lines with the same definition and the
associated circuits

In this paper, we assume that each line in the figure is a
curved one, although PLCA permits a straight line.

Circuit is defined as a class that satisfies the following
condition: for an arbitrary instance c of Circuit, c.ls is
a sequence [l∗1, . . . , l

∗

n] where l1, . . . , ln ∈ Line(n ≥ 1),
li.ps = [pi, pi+1](1 ≤ i ≤ n) and pn+1 = p1. [l∗1, . . . , l

∗

n]
and [l∗j , . . . , l∗n, l∗1, . . . , l

∗

j−1] denote the same circuit for any
j (1 ≤ j ≤ n). In Fig. 6(b), we have three circuits:
c1.ls = {l−1 , l+2 }, c2.ls = {l−2 , l+3 }, c3.ls = {l−3 , l+1 }.

For c1, c2 ∈ Circuit, we introduce two new predicates lc
and pc to denote that two circuits share line(s) and point(s),
respectively. lc(c1, c2) is true iff there exists l ∈ Line such
that (l+ ∈ c1.ls) ∧ (l− ∈ c2.ls). pc(c1, c2) is true iff there
exists p ∈ Point such that (p ∈ l1.ps) ∧ (p ∈ l2.ps)∧
(l∗1 ∈ c1.ls)∧(l∗2 ∈ c2.ls). A circuit is the boundary between
an area and its adjacent areas viewed from the side of that
area.

Area is defined as a class that satisfies the following con-
dition: for an arbitrary instance a of Area, a.cs is a set
{c1, . . . , cn} where c1, . . . , cn ∈ Circuit(n ≥ 1), and
∀ci, cj ∈ a.cs; (i 6= j) → (¬pc(ci, cj) ∧ ¬lc(ci, cj)). Intu-
itively, an area is a connected region which consists of ex-
actly one piece. No two areas are allowed to cross. The final
condition means that any pair of circuits that belong to the
same area cannot share a point or a line. For areaa a1 and a2,
if there exist circuits c1 and c2 such that c1 ∈ a1.circuits
and c2 ∈ a2.cs, respectively, and lc(c1, c2) holds, then a1

and a2 are said to be line-connected.
We assume that there exists a circuit in the outermost ex-

tremity of the figure called om(outermost). This means
that the target figure is drawn in a finite space, and the space
can be divided into a number of areas that do not overlap



Figure 7: Important components of convex-hull

with each other.
SubPLCA is defined as a class that satisfies the following

condition: for an arbitrary instance se of SubPLCA, it has
the following components:

definition 1 (SubPLCA)

se.ps = {p0, p1, · · · , pn−1}
where p0, p1, · · · , pn−1 ∈ Point

se.ls = {l0, l1, · · · , ln−1}
where l0, l1, · · · , ln−1 ∈ Line

se.cs = {c0, c1, · · · , cn−1}
where c0, c1, · · · , cn−1 ∈ Circuit

se.as = {a0, a1, · · · , an−1}
where a0, a1, · · · , an−1 ∈ Area

se.area = a where a ∈ se.as

se.som = c where c ∈ se.cs

We call this expression SubPLCA of Area a.

Intuitively, a SubPLCA se is an expression for a restricted
frame in which the extracted area se.area from the source
figure is pasted. There exists a circuit in the outermost ex-
tremity of the frame called som(suboutermost).

We also define three components of se. se.iom is the
inner circuit of the frame, se.ocs is the outer circuit of the
convex-hull of the extracted area, and se.oa which is said
to be background area is the outside of the convex-hull of
the extracted area in the frame. The correspondence of these
components and the figure is shown in Figure 7, and their
formal definitions are shown below.

definition 2 (the inner circuit of the frame) se.iom is such
Circuit c that satisfies:

∀l∗ ∈ se.som.ls(l∗re ∈ c.ls)
∧ ∀l∗ ∈ c.ls(l∗re ∈ se.som.ls)
∧ c ∈ se.cs

It means that for each line l∗ that belongs to the subouter-
most circuit, the opposite direction of l∗ belongs to se.iom,
and vise versa.

definition 3 (the outer circuit of the convex-hull of the ex-
tracted area) se.oca is such Circuit c that satisfies:

c ∈ se.oa.cs ∧ c 6= se.iom

Figure 8: A tree structure of e+.ses

definition 4 (the background area) se.oa is such Area a that
satisfies:

se.iom ∈ a.cs
∧ |a.cs| = 2
∧ a ∈ se.as
∧ a 6= se.area

It means that the circuits belonging to the background area
are only the inner circuit of the frame and the outer circuit
of the convex-hull of the extracted area.

Tree Structure of SubPLCAs If the source figure con-
tains n areas, then n number of se′s are defined indepen-
dently. Moreover, if a concave part of the source figure again
has a concavity, we use hierarchical representation to show
its shape. It means that each SubPLCA is a PLCA+ expres-
sion which includes SubPLCA, recursively. As a result, for
a PLCA+ expression e+, e+.ses has a tree structure (Fig-
ure 8). For a SubPLCA se, if se.area = a ∧ se.as =
{a, a1, a2, · · · , an}, Area a is said to be a parent Area of
Area a1, a2, · · · , an, and a1, a2, · · · , an are said to be child
Areas of Area a.

PLCA+ Expression
PLCA+ expression is defined as a class that satisfies the fol-
lowing condition: for an arbitrary instance e+ of PLCA+
expression, e+.ps, e+.ls, e+.cs, e+.as and e+.ses are sets
of Points, Lines, Circuits, Areas and subPLCA expressions,
respectively, and e+.om ∈ e+.cs is the outermost circuits of
the whole figure.

definition 5 (element) (i) Let p, l, c and a be Point, Line,
Circuit and Area, respectively. If p ∈ l.ps, then p is said to
be en element of l. If l ∈ c.ls, then l is said to be en element
of c. If c ∈ a.ls, then c is said to be en element of a. (ii) Let
o1, o2 and o3 are either Point, Line, Circuit or Area. If o1

is an element of o2 and o2 is an element of o3, then o1 is an
element of o3.

Consistency of PLCA+
definition 6 (consistency) A PLCA+ expression e+ is said
to be consistent iff the following constraints are satisfied.



Figure 9: A figure corresponding to such SubPLCA that
does not satisfy the uniqueness of se.iom

Figure 10: A figure corresponding to such SubPLCA that
does not satisfy the uniqueness of se.oa

Constraint on Point-Line Each Point belongs to some
line. Each Point in l.ps should belong to e+.ps where l be-
longs to e+.ls. For each SubPLCA, the same constraints are
put.

Constraint on Line-Circuit Each Line belongs to exactly
two distinct Circuits. Each Line in c.ls should belong to
e+.ls where c belongs to e+.cs. For each SubPLCA, the
same constraints are put.

Constraint on Circuit-Area For any Circuit other than
outermost and suboutermost belongs to exactly one Area.
Each Circuit in a.cs should belong to e+.cs where a belongs
to e+.as. For each SubPLCA, the same constraints are put.

Due to these three constraints, neither isolated lines nor
points are allowed.

Constraint on SubPLCA There exist the unique se.area,
se.som, se.iom, se.oca and se.oa for each subPLCA.
Moreover, the extracted area se.area and the background
area se.oa should be line-connected.

The uniqueness of se.iom eliminates the case that is
shown in Figure 9. The uniqueness of se.oa eliminates the
case that is shown in Figure 9. The line-connectedness of
se.area and se.oa eliminates the case that is shown in Fig-
ure 11.

Planarity of PLCA+

We have investigated the planarity condition for PLCA ex-
pression (Takahashi and Sumitomo 2008). For a PLCA+ ex-
pression, since each SubPLCA se and e+ are also regarded
as PLCA expressions, they satisfy this condition.

Figure 11: A figure corresponding to such SubPLCA that
does not satisfy the line-connectedness between se.area and
se.oa

Figure 12: Inner Circuit and Outer Circuit

|e+.ps| − |e+.ls| − |e+.cs| + 2|e+.as| = 0

∀se ∈ e+.ses
(

|se.ps| − |se.ls| − |se.cs| + 2|se.as| = 0
)

In addition, there are more constraints for planarity, be-
tween Area and SubPLCA, and between SubPLCAs.

Inner and Outer Before presenting the conditions, we in-
troduce the concept of Inner and Outer.

First, we define the predicates ioc(is Outer Circuit) and
iic(is Inner Circuit) for a Circuit c as follows.

definition 7 (Inner/Outer Circuit)

ioc(c) =







































true

c = e+.om

∃se ∈ e+.ses(c = se.som)

∀l∗ ∈ c.ls
(

l∗re ∈ c′.ls ∧ ¬ioc(c′)
)

∀a ∈ {a|c ∈ a.cs}
(

∃c′ ∈ a.cs \ {c}
(

¬ioc(c′)
)

)

false otherwise

iic(c) =

{

true ¬ioc(c)

false otherwise

Intuitively, Outer Circuit means the Circuit which encir-
cles the outside of an Area, while Inner Circuit means the
one which encircles the inside (Figure 12). For a consistent
PLCA expression, it is decidable whether a Circuit is Inner
Circuit or Outer Circuit (Takahashi and Sumitomo 2008) �

Next, we define the predicate io(Inner Object) for com-
ponents o1 and o2 as follows.



Figure 13: Inner Objects in an Area

definition 8 (Inner Object)

io(o1, o2) =































o1 ∈ As ∧ o2 ∈ o1.cs
o1 ∈ Cs ∧ o2 ∈ o1.ls
o1 ∈ Ls ∧ o2 ∈ o1.ps
iic(o1) ∧ o1 ∈ o2.cs
ioc(o1) ∧ l∗ ∈ o1.ls

∧∃c ∈ o2.cs(l
∗

re ∈ c.ls)
io(o1, o3) ∧ io(o3, o2)

Let o1 and o2 are either Point, Line, Circuit or Area. In-
tuitively, io(o1, o2) is true if o2 is in the inside of o1, and
false, otherwise (Figure 13).

Constraint on Area-SubPLCA For each Area a other
than the background area in an se, there exists an Area in
some se′ whose parent Area is a. There is no child Area
of background areas. These constraints are formalized as
follows.

Let Asse.oa =
⋃

se∈e+.ses se.oa.

∀a ∈ As \ Asse.oa

(

∣

∣{se|se.area = a}
∣

∣ = 1
)

∀a ∈ Asse.oa





∣

∣{se|a ∈ se.as}
∣

∣ = 1
∧a /∈

⋃

se∈e+.ses se.area
∧a /∈ e+.as





An Area a and all of its Inner Objects are included in the
inside of the background area of the SubPLCA of a. This
constraint is formalized as follows.

se.area = a (1)

se.ps ⊇

{

p

∣

∣

∣

∣

(

io(a, p) ∧ p ∈ Ps
)

∨∃l ∈ {l|l∗ ∈ se.som.ls}(p ∈ l.ps)

}

(2)

se.ls ⊇
{

l
∣

∣

∣

(

io(a, l) ∧ l ∈ Ls
)

∨ l∗ ∈ se.som.ls
}

(3)

se.cs ⊇











c

∣

∣

∣

∣

∣

∣

∣

io(a, c) ∧ c ∈ Cs
∨ c = se.som
∨ c = se.iom
∨ c = se.oca











(4)

se.as ⊇

{

a′

∣

∣

∣

∣

∣

io(a, a′) ∧ a′ ∈ As
∨ c = se.oa
∨ c = se.area

}

Constraint on SubPLCA-SubPLCA Consider the Sub-
PLCAs of areas which are line-connected. The line shared
by these areas should not connect to the each background
area of the SubPLCAs (Figure 14). It reflects the fact that

Figure 14: Convexity of Line and constraints SubPLCAs

Figure 15: Inside of Area a

when the areas are line-connected, the one is convex and the
other is concave.

∀l∗ ∈ se1.oca.ls(l∗re /∈ se2.oca.ls)
(se1, se2 ∈ e+.ses ∧ se1 6= se2)

3. Generation of PLCA+
Making PLCA+ from PLCA and Figure
For a given figure F in a two-dimensional plane, we have
already described the generation of PLCA expression e for
F (Takahashi and Sumitomo 2008). Here, we describe the
generation of PLCA+ expression e+ from F and e. Note that
A and A′ denote the part in the figure F corresponding to
the expression a and the convex-hull of A. In this algorithm,
for each area in F , we prepare the frame for its SubPLCA,
make an expression corresponding to the inside of A and that
corresponding to the background in the frame, and combine
these expressions. If the extracted area has a concave part,
this process is recursively repeated.

We show the outline of the algorithm.
Initially, e+.ps, e+.ls, e+.cs, e+.as are set to be {}.

function : generate(F, e)

(a) Set e+.ps = e+.ps ∪ e.ps, e+.ls = e+.ls ∪ e.ls,
e+.cs = e+.cps ∪ e.cs and e+.as = e+.as ∪ e.as.

(b) Set e+.ses = {} and Areas = e+.as.
(c) Repeat (d) until Areas = {}.
(d) Pick up an arbitrary Area a from Areas, and proceed

the followings.
(d1) The inside of the Area Each element of a is
added to se.ps, se.ls, se.cs and se.as, depending on
its class. And set se.area = a (Figure 15).

(d2) The outside of the Area Make a SubPLCA ex-
pression se which consists of the only one area a′

with one Points, one Line, and two Circuits se.som
and se.iom (Figure 16).



Figure 16: The background in the frame

Figure 17: Combining

(d3) Combining expressions Make a new Circuit ex-
pression corresponding to the circuit that encircles the
outer part of Area a, and add it both to se.cs and to
se.oa.cs (Figure 17).

(d4) Generating expression for concavity If A′ is
not fully occupied by A in F , create the concave part
of A by comparing A and A′ in F . In this process,
Line-division and Area-generation operators (Sumit-
omo and Takahashi 2007) are used (Figure 18). Oth-
erwise, do nothing.

(d5) Updating Areas Add this se to e+.ses, and add
all Areas in se.areas other than se.area and se.oa to
Areas.

Judgment of Line Convexity
For a given PLCA+ expression, assume that a and a′ are the
expressions corresponding to the Area A and its convex-hull
A′ in the figure. If A and A′ are matched, that is, A′ is fully
occupied by A, then A is said to be convex, otherwise, it is
said to be concave.

Figure 18: Generation of concavity

Figure 19: Convexity of Line

The Line expression corresponding to the part that is
matched when A and A′ are piled is said to be convex; other-
wise, it is said to be concave (Figure 19). Note that the con-
vexity of a Line is determined by viewing from the inside of
A and it is inverted by viewing from the outside. For a di-
rected Line l∗ which is an element of an Area a, convex(l∗)
denotes that Line l is convex from the side of an Area a; and
concave(l∗) denotes that Line l is concave from the side of
an Area a.

Each line in the figure is a curved one. Therefore, the Line
in se.oca is concave, since se.oca corresponds to the outer
circuit of the convex-hull. Thus, the following properties
hold.

convex(l∗) ↔ concave(l∗re)

∀se ∈ e+.ses
(

∀l∗ ∈ se.oca.ls
(

concave(l∗)
)

)

An Algorithm for Judging the Convexity of Line We
show an algorithm for determining the convexity of Line
which is not included in the outermost or sub-outermosts.

function : getConvexity(l∗)

Consider the SubPLCA se such that l∗ ∈ se.ls holds.
(a) If l∗ ∈ se.oca.ls, then concave(l∗).
(b) If l∗ /∈ se.oca.ls, consider getConvexity(l∗re).

(b1) If convex(l∗re) is obtained as the result of
getConvexity(l∗re), then concave(l∗).

(b2) If concave(l∗re) is obtained as the result of
getConvexity(l∗re), then convex(l∗).

The convexity of each Line is decidable by this algorithm
(see Appendix).

4. Discussion
There are several works which studied a qualitative shape
representation.

In some works, logic based approach is taken, that is, the
relationship of the regions are represented using predicates.
Gotts provided a qualitative representation for a shape of a
region in RCC framework (Gotts 1994). He used a pred-
icate that stands for a connected relation and showed that
various types of qualitative shape references can be repre-
sented using the Clark’s C operator in the first order logic.
Cohn proposed a symbolic representation for the shapes of



Figure 20: Geometric inside

figures (Cohn 1995). He extended RCC to represent the
difference of shapes of regions in the first-order logic. He
considered the convexity of a region, and represented the
difference of the original region and its convex-hull as the
concavity. He represented the subtle qualitative shape differ-
ence using the relative positional relationships of the regions
appeared as the concave parts. Moreover, he used the hier-
archical treatment of the region to represent the complicated
shapes. These works show the expressive power of RCC
or C operator, however, a new predicate and axioms should
be defined every time a new distinction is introduced, and
there are no discussion on the well-definedness. Pratt inves-
tigates the shape representation in an algebraic manner (Pratt
1999). In PLCA+, we also use the convex-hull and hierar-
chical treatment of the information on convexity. However,
we adopt the representation in a kind of object oriented man-
ner, instead of predicates. Moreover, they handled a shape
of the single object, and not referred to the connection of
the objects. For example, the connection of two objects with
the concave part shown in Figure 3 cannot be represented in
their methods, while it can be represented in PLCA+.

Another approach for qualitative shape representation is
the one that focused on the shape of the lines between re-
gions. In (Museros and Escrig 2004), a line is divided
into several segments, and the properties such as qualitative
shape, angle or size of the segments are represented. In this
method, lots of information is necessary even for a single
segment. In (Nedas and Egenhofer 2004), a line is also di-
vided into segments, and the relationships of these segments
are represented. In (Schlieder 1996), a shape of the line is
represented by positional ordering of the points on the line.
In these methods, the position on which the point is set is
difficult, and lots of redundancy appears depending on the
positions. Moreover, it is impossible to represent the loca-
tion of the objects shown in Figure 20 called the geometric
inside by using the information added on lines. That is the
reason why we use the convex-hull in PLCA+. It is possi-
ble to represent it in PLCA+ by a little extension, although
current PLCA+ does not handle such a case.

5. Conclusion
We have proposed a qualitative spatial representation
PLCA+, an extended PLCA to handle the qualitative shape
representation. It is based on the convex-hull. We formal-
ized the definition of PLCA+, gave an algorithm from a fig-
ure to generate the PLCA+ expression.

PLCA provides a symbolic expression for figures in a

two-dimensional plane representing the connection patterns
of regions using the simple components of Point, Line, Cir-
cuit and Area, and PLCA+ can represent the convexity of
regions in addition. We can reason about the convexity of a
single region, and the connectivity of multiple regions with
the information on convexity.

We have also shown the properties that should be satisfied
by the PLCA+ expression generated from the figure. These
conditions are considered to be necessary and sufficient con-
ditions of the planarity of PLCA+ expression. In future, we
are considering to prove this property.

Extension of PLCA+ is also under consideration. We
would like to treat the figures using straight lines, and also
treat the other relationships of regions including geometric
inside.
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Appendix. Decidability of Line Convexity
For a consistent planar PLCA+ expression e+, let Lsse be
Ls \

⋃

se∈e+.ses{l|l
∗ ∈ se.som.ls}, which is equivalent to

⋃

se∈e+.ses se.ls \ {l|l∗ ∈ se.som.ls}.
We show that the convexity of each Line in each Sub-

PLCA is decidable. We prove this by the induction on the
tree structure of SubPLCA shown in Section 2.
lemma 1 The convexity of each Line in SubPLCA se at the
leaf node is decidable.

∀l∗ ∈ Lsleafnode

(

convex(l∗) ∧ concave(l∗re)
)

.

Proof)
In this case,

se.as = {se.oa, se.area}

holds, since the SubPLCA of se.area is equivalent to se
itself and there is no child node.

The number of the other components of se are determined
since it is consistent and planer. Therefore, the PLCA+ ex-
pression for se is as follows (Figure 21):

se.ps = {p1, p2} l1.ps = [p1, p1]
se.ls = {l1, l2} l2.ps = [p2, p2]
se.cs = {c1, c2, c3, c4} c1.ls = [l+1 ]
se.as = {a1, a2} c2.ls = [l−1 ]
se.area = a2 c3.ls = [l+2 ]
se.som = c1 c4.ls = [l−2 ]
se.iom = c2 a1.cs = {c2, c3}
se.oa = a1 a2.cs = {c4}
se.oca = c3

Figure 21: The SubPLCA for a leaf node

In this case, it is sufficient to determine the convexity of
the directed Lines of l+2 and l−2 .

concave(l+2 ) holds since l+2 ∈ se.oca.ls. Therefore,
convex(l−2 ) holds. Thus, the lemma holds.
Q.E.D.

lemma 2 Assume that the convexity of each line in all the
SubPLCAs sei(1 ≤ i ≤ n) which are the SubPLCAs of
Areas in se.as is decidable. Then, the convexity of each line
in SubPLCA se is decidable.

Proof)
Let Lsinternal = se.ls \ {l|l∗ ∈ se.som.ls}. It is suffi-

cient to prove that

∀l∗ ∈ Lsinternal

(

convex(l∗) ∧ concave(l∗re)
)

Lsinternal can be divided into three subsets: the directed
Lines in se.oca, the directed Lines belonging to the Circuit
in se.area.cs, the directed Lines belonging to the Circuit in
sei.cs.

∀l∗ ∈ se.oca.ls
(

concave(l∗)
)

holds and the convexity
of each Line in sei is decidable from the induction hy-
pothesis. The shape of the Line belonging to the circuit in
se.area.cs is determined by the definition of line convexity.
It means that the information of the convexity of all Lines
in Lsinternal is obtained. Moreover, the convexity of each
Line is decidable, since e+ is a consistent planer expression.
Therefore, the lemma holds.
Q.E.D.

theorem 1 For a consistent planar PLCA+ expression, the
convexity of each Line in the expression is decidable.

Proof) The theorem holds from the above two lemmas.
Q.E.D.


