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Abstract

This paper presents a new method for building
domain-specific web search engines. Previous
methods eliminate irrelevant documents from the
pages accessed using heuristics based on human
knowledge about the domain in question. Accord-
ingly, they are hard to build and can not be applied
to other domains. The keyword spice method, in
contrast, improves search performance by adding
domain-specific keywords, called keyword spices,
to the user’s input query; the modified query is then
forwarded to a general-purpose search engine. Key-
word spices can be effectively discovered automati-
cally from web documents allowing us to build high
quality domain-specific search engines in various
domains without requiring the collection of heuris-
tic knowledge. We describe a machine learning
algorithm, which is a type of decision-tree learn-
ing algorithm, that can extract keyword spices. To
demonstrate the value of the proposed approach,
we conduct experiments in the domain of cooking.
The results confirm the excellent performance of
our method in terms of both precision and recall.

1 Introduction
The expansion of the Internet and the number of its users has
raised many new problems in information retrieval and arti-
ficial intelligence. Gathering information from the web is a
difficult task for a novice user even if he uses a search engine.
The user must have experience and skill to find the relevant
pages from the large number of documents returned, which of-
ten cover a wide variety of topics. One solution is to build a

∗Presently with NTT Docomo, Inc.
†Presently with SANYO Electric Co.,Ltd.

domain-specific search engine[McCallum et al., 1999]; an en-
gine that returns only those web pages relevant to the topic in
question.

This paper proposes a new method for building domain-
specific search engines automatically that it is based on ap-
plying machine learning technologies to determine keyword
occurrence in web documents.

When one of the authors used a popular Japanese search en-
gine (Goo1) to find some beef recipes, he input the obvious
keyword gyuniku (beef), but only 15 of the top 25 returned
pages (60%) pertained to recipes. He hit on the idea of adding
another keyword shio (salt) to the query, at which point all but
one of the returned pages(96%) contained recipes. Surprised
at this enhancement, he used the same approach for other in-
gredients such as pork and chicken... the same improvement
in search performance was seen. This indicated the possibility
of making a domain-specific search engine simply by adding
a few keywords to the user’s query and forwarding the mod-
ified query to a general-purpose search engine. Our keyword
spice method is a generalization of this finding.

Several research papers have described domain-specific
web search services. A straightforward approach to building
a domain-specific web search engine is to make indices to do-
main documents by running web-crawling spiders that col-
lect only relevant pages. Cora2[McCallum et al., 1999] is a
domain-specific search engine for computer science research
papers. Its web-crawling spiders effectively explore the web
by using reinforcement learning techniques. SPIRAL[Co-
hen, 1998] or WebKB[Craven et al., 1998] also use crawlers.
These systems offer sophisticated search functions because
they establish their own local databases and can apply vari-
ous machine learning or knowledge representation techniques
to the data. Unfortunately, domains such as personal home-

1http://www.goo.ne.jp
2http://cora.whizbang.com/



Figure 1: Filtering model for building domain-specific web
search engines

pages or cooking pages, which are dispersed across many web
sites, are not well handled by spiders since the time and net-
work bandwidth consumed are excessive. Accordingly, such
types of systems are suitable only for those domains that have
few web sites.

Reusing the large indices of general-purpose search engines
to build domain-specific ones is a clever idea[Etzioni, 1996].
For example, Ahoy!3 [Shakes et al., 1997] is a search engine
specialized for finding personal homepages. It forwards the
user’s query to general-purpose search engines and sifts out
irrelevant documents from the returned ones to increase preci-
sion by domain-specific filters. We call this the filtering model
for building domain-specific search engines (Figure 1). Ahoy!
has a learning mechanism to assess the patterns of relevant
URLs from previous successful searches, but overall accuracy
basically depends on human knowledge.

One solution to the above problem is to make domain fil-
ters automatically from sample documents. Automatic text
filtering, which classifies documents into relevant and non-
relevant ones, has been a major research topic in both informa-
tion retrieval[Baeza-Yates and Ribeiro-Neto, 1999] and ma-
chine learning[Mitchell, 1997].

We can use various machine learning algorithms to find
such filters if the training examples, which consist of doc-
uments randomly sampled from the web together with their
manual classification, are available. Unfortunately, making
such training examples is the real barrier because the web is
very large, and randomly sampling the web will provide only
a small likelihood of encountering the domain in question. In
fact, most studies on text classification have been applied to
e-mail, net news, or web documents at limited sites where the
ratio of positive examples is rather high. Thus previous meth-
ods of text classification cannot be directly applied to the prob-
lem of building domain-specific web search engines.

The keyword-spice method considers only those web pages

3http://ahoy.cs.washington.edu:6060/

Figure 2: The keyword spice model of building domain-
specific web search engines

Figure 3: Sampling with input keywords to increase the ratio
of positive examples

that contain the user’s input query keyword, not all web pages.
This eliminates the problem of finding positive examples and
enables us to make domain-specific search engines at low
cost.

The remainder of this paper is organized as follows: Sec-
tion 2 presents the idea of building domain-specific search en-
gines using keyword spices. Section 3 describes a machine
learning algorithm for discovering keyword spices. Section 4
evaluates our method and our conclusions are given in Section
5.

2 The keyword spice model of building
domain-specific web search engines

Here we introduce some notations to define the machine learn-
ing problem. We let D denote the set of all web documents;



Dt denotes the set of documents relevant to a certain domain.
The target function (an ideal domain filter) that correctly clas-
sifies any document d ∈ D is given as

f(d) =
{

1 if d ∈ Dt

0 otherwise
We let K be the set of all keywords in the domain and let H

be the hypothesis space composed of all Boolean expressions
where any keyword k ∈ K is regarded as a Boolean variable.
We adopt the Boolean hypothesis space because most com-
mercial search engines can accept queries written in Boolean
expressions.

A Boolean expression of keywords can be regarded as a
function from D to {0, 1} when we assign 1(true) to a key-
word (Boolean variable) if the keyword is contained in the
document and 0(false) otherwise. In the filtering model, the
problem of building a domain filter is equal to finding hypoth-
esis h that minimizes the error rate

1
|D|

∑
d∈D

δ(h(d), f(d))

Note: quantity δ(h(d), f(d)) is 1 if h(d) �= f(d), 0 otherwise.
The keyword spice model does not filter documents re-

turned by a general-purpose search engine. Instead, it extends
the user’s input query with a domain-specific Boolean expres-
sion (keyword spice), which better classifies the domain doc-
uments, and passes the extended query to a general-purpose
search engine (Figure 2). This model is just the reverse of the
filtering model.

Our method is based on the idea that when we build a
domain-specific web search engine, we need consider only
those web pages that contain the user’s input query keywords;
not all web pages.

As described in Figure 3, the scope of sampling is reduced
from set D, all web documents, to D(k), the set of web pages
that contain input keyword k; this increases the ratio of posi-
tive examples {d|(k∧h)(d) = 1}. This idea makes it easier to
create training sets and it becomes possible to build a domain
filter, which is not possible with random sampling.

By using domain filter h, we modify the user’s input query
k to k ∧ h, so the returned documents contain k and are in-
cluded in the domain. In short, h is the keyword spice for the
domain.

3 Algorithm for extracting Keyword Spices
3.1 Identifying Keyword Spices
It is rather easy to find good keyword spices for any input key-
word k (for example “beef”). The problem is to find that the
keyword spices that provide enough generalization to handle
all future user keywords.

We let p(k) denote the probability of that a user will input
keyword k to a domain-specific search engine. Then

∑
k∈K

p(k)
∑

d∈D(k)

1
|D(k)|δ((k ∧ h)(d), f(d))

is the expectation of the error rate when users try to locate do-
main documents using this system.
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Figure 4: An example of decision tree that classifies docu-
ments

tablespoon

∨ (¬tablespoon ∧ recipe ∧ ¬home ∧ ¬top)

∨ (¬tablespoon ∧ ¬recipe ∧ pepper ∧ ¬pan)

Figure 5: An example of Boolean expression converted from
the tree in Figure 4

The Boolean expression that minimizes the above expec-
tation value is the most effective keyword spice. It would be
best to make training examples using p(k) but we do not know
p(k) beforehand. Obviously, we have to start with some rea-
sonable value of p(k), and modify the value as statistics on
input keywords are collected.

In this paper, we choose several input keyword candidates
in the cooking domain. We assume that all candidates have
the same probability of occurrence and collect the same num-
ber of documents for each keyword as described in Section
4. We then split the examples into two disjoint subsets, the
training set Dtraining (used for identifying initial keyword
spices), and the validation set Dvalidation to simplify the key-
word spices described in Section 3.2.

We apply a decision tree learning algorithm to discover
keyword spices because it is easy to convert a tree into
Boolean expressions, which are accepted by most commercial
search engines. In this decision tree learning step, each key-
word is used as an attribute whose value is 1(when the docu-
ment contains this keyword) or 0(otherwise). Figure 4 shows
an example of simple decision tree that classifies documents.

The node indicates attribute, the value of branch indicates
the value of the attribute, and the leaf indicates the class. In
order to classify a document, we start at the root of the tree,
examine whether the document contains the attribute (key-
word) or not and take the corresponding branch. The pro-
cess continues until it reaches a leaf and the document is as-
serted to belong to the class corresponding to the value of the
leaf. This tree classifies web documents into T (domain doc-
uments) and F (the others), and the web document, for exam-
ple, that does not include “tablespoon”, does “recipe”, does
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Figure 6: A decision tree induced from web documents

not “home”, and does not “top” belongs to class T .
We make the initial decision tree using an information gain

measure[Quinlan, 1986] for greedy search without using any
pruning technique. In our real case, the number of attributes
(keywords) is large enough (several thousands) to make a
tree that can correctly classify all examples in the training set
Dtraining. Then for each path in the induced tree that ends
in a positive result, we make a Boolean expression that con-
joins all keywords (a keyword is treated as a positive literal
when its value is 1 and a negative literal otherwise) on the
path. Our aim is to make a Boolean expression query that
specifies the domain documents and that can be entered into
search engines; accordingly, we consider only positive paths.

We make a Boolean expression h by making a disjunction
of all these conjunctions ( i.e. we make a disjunctive normal
form of a Boolean expression). This is the initial form of key-
word spices. Figure 5 provides an example of a Boolean ex-
pression converted from the tree in Figure 4.

3.2 Simplifying Keyword Spices

Figure 6 shows a decision tree induced from collected web
document in the experiments described in the next section4.
Decision trees usually grow very large which triggers the
over-fitting problem. Furthermore, too-complex queries can-
not be accepted by commercial search engines and so we have
to simplify the induced Boolean expression. We developed a
two-stage simplification algorithm (described below) that is
like rule post-pruning[Quinlan, 1993].

1. For each conjunction c in h we remove keywords
(Boolean literals) from c to simplify it.

4The original keywords are Japanese.

2. We remove conjunctions from disjunctive normal form
h to simplify it.

In information retrieval research, we normally use preci-
sion and recall for query evaluation. Precision is the ratio of
number of relevant documents to the number of returned doc-
uments and recall is the ratio of the number of relevant docu-
ments returned to the number of relevant documents in exis-
tence.

In this section, precision P and recall R are defined over
validation set Dvalidation as follows:

P =
|Ddomain ∩ DBoolean |

|DBoolean |
R =

|Ddomain ∩ DBoolean |
|Ddomain|

where Ddomain is the set of relevant documents classified by
humans and DBoolean is the set of documents that the Boolean
expression identifies as being relevant in the validation set.

In our case, we use the harmonic mean of precision P and
recall R[Shaw Jr. et al., 1997]

F =
2

1
R

+ 1
P

as the criterion for removal. The harmonic mean weights low
values more heavily than high values. High values of F occur
only when both precision P and recall R are high. So if we
simplify keyword spices in the way that results in high value
of F , we can obtain the keyword spices that are well-balanced
in terms of precision and recall.

In the first stage of simplification we treat each conjunction
as if it is an independent Boolean expression. We calculate
the conjunction’s harmonic mean of recall and precision over
the validation set. For each conjunction, we remove the key-
word (Boolean literal) if it results in the maximum improve-
ment in this harmonic mean and repeat this process until there
is no keyword that can be removed without decreasing the har-
monic mean.

When we remove a keyword from conjunction recall ei-
ther increases or remains unchanged. Before the simplifica-
tion, each conjunction usually yields high precision and low
recall. Accordingly, we can remove the keyword that results
in improvement in recall in exchange for some decrease in
precision, because the harmonic mean weights lower recall
values more heavily. The removal of the keywords from the
conjunction by the harmonic mean may appear to cause some
problems. If the initial conjunction contains only a few rele-
vant documents, the algorithm makes conjunctions that con-
tain very large numbers of irrelevant documents. However,
we can remove the conjunction from the keyword spices by
the algorithm for simplifying a disjunction as is described be-
low.

In the second stage of simplification, we try to remove con-
junctions from the disjunctive normal form h to simplify the
keyword spices. We remove the conjunctions so as to maxi-
mize the increase in harmonic mean F . We repeat this process
until there is no conjunction that can be removed without de-
creasing the harmonic mean F .



0. Generate input keywords according to some estimate of distri-
bution p(k) and collect web pages that contain keyword k and
classify them into positive and negative examples by hand.

1. Split the examples into two disjoint subsets, the training set,
Dtraining (for generating the initial decision tree) and the val-
idation set, Dvalidation (for simplifying the tree).

2. Make the initial decision tree from Dtraining using an infor-
mation gain measure without any pruning technique.

3. Convert the tree so learned into a set of positive conjunctions
by creating one conjunction for each path from the root node to
each leaf node: this classifies positive examples.

4. Make a disjunctive normal form of Boolean expression h by
making a disjunction of all positive conjunctions.

5. For each conjunction c in h do
Repeat
• Remove the keyword (Boolean literal) from the con-

junction c that results in the maximum increase in the
harmonic mean

Fc =
2

1
Rc

+ 1
Pc

of precision measure Pc and recall measure Rc of c
over the validation set.

Until there is no keyword that can be removed without
decreasing Fc.

End

6. Repeat
• Remove the conjunctive component from the disjunc-

tive normal form h that results in the maximum in-
crease in the harmonic mean

Fh =
2

1
Rh

+ 1
Ph

of precision measure Ph and recall measure Rh of h
over the validation set.

Until there is no conjunction that can be removed without de-
creasing Fh.

Return h

Figure 7: The keyword spice extraction algorithm

After the first stage of simplification, each conjunction is
generalized and changed to cover many examples. As a re-
sult, the recall of h becomes rather high, but some conjunc-
tions may cover many irrelevant documents. We can remove
the conjunctions that cause the large improvement in the pre-
cision with a slight reduction in recall. Those components that
cover many irrelevant documents are removed in this stage,
because the other conjunctions cover most of the relevant doc-
uments and the removal of the defective conjunctions does not
cause a large reduction in recall. This yields simple keyword
spices composed of a few conjunctions.

After the above simplification processes h is returned as the
keyword spices for this domain. Our algorithm for extracting
keyword spices is summarized in Figure 7.

Table 1: Collected web documents in the cooking domain

Keyword relevant irrelevant total
beef 47 153 200
chicken 88 112 200
paprika 79 121 200
potato 49 151 200
pumpkin 42 158 200
radish 64 136 200
salmon 15 185 200
tofu 45 155 200
tomato 33 167 200
whitefish 103 97 200
Total 565 1435 2000

Table 2: Pruning results

Trials
1 2 3 4 5

Initial conjunctions 10 15 13 15 10
keywords 65 89 76 87 62

Step 5 conjunctions 10 15 13 15 10
keywords 17 32 26 34 19

Step 6 onjunctions 2 2 2 2 2
keywords 4 3 4 4 4

4 Evaluation in the Cooking Domain

4.1 Experimental Settings
As described in the previous section, we gathered two
thousand sample pages of the cooking domain that con-
tained human-entered keywords in Japanese: gyuniku (beef),
toriniku (chicken), piman (paprika), jagaimo (potato),
kabocha (pumpkin), daikon (radish), sake (salmon), tofu
(tofu), tomato (tomato), and shiromizakana (whitefish).
We used a Japanese general-purpose search engine Goo to
find and download web pages containing the above input
keywords. We collected two hundred sample pages for
each initial keyword. We examined the pages collected and
classified them as either relevant or irrelevant by hand (Table
1).

In splitting the collected documents into the training set
and validation set, we paid no attention to which keywords
were input. Thus each set was randomly composed of doc-
uments containing the input keywords. We performed 5 trials
in which the sample pages were split randomly in this fashion.

Table 2 shows the pruning results after each step. In the
early steps, induced trees are very large and after translating
trees to conjunctions, we have more than 10 conjunctions; the
number of keywords in these conjunctions exceeded 62. This
number is too large to permit entry into commercial search en-
gines. After step 5 the number of keywords was reduced to
one third. Step 6 removed redundant conjunctions and key-
word number was reduced again to 3 to 4. This number of
keywords can be accepted by commercial search engines.

Different trials yielded different keyword spices. Figure 8



(ingredients ∧ ¬speciality ∧ ¬goods)

∨ tablespoon

Figure 8: Extracted keyword spices

Table 3: Average precision of the queries over the index of a
general-purpose search engine

Query The input query The query with
keyword spices

pork 0.271 0.995
spinach 0.205 0.979
shrimp 0.063 0.986

Table 4: Estimated recall of the queries with keyword spices
over the index of a general-purpose search engine

Query Reldocindex Reldocspice Estimated
recall

pork 10728 10084 0.940
spinach 4744 4126 0.870
shrimp 5868 5728 0.976

shows, as an example, the keyword spices discovered in the
first trial. We used these keyword spices in subsequent exper-
iments.

To conduct realistic tests with external commercial search
engines, we choose the keywords of butaniku (pork), horenso
(spinach) and ebi (shrimp) which were not used to generate
the keyword spices.

4.2 Precision
Figure 9 compares the precision values for the queries con-
taining only keywords and the queries with keyword spices
for the three input keywords. We checked up to the top 1000
pages as ranked by the search engine Goo. In general, as the
number of pages viewed increases, the precision with query-
only input decreases, while the precision of queries with key-
word spices stays high. Table 3 lists the average precision of
the top 1000 returned results. Precision is higher than 97% for
all queries.

4.3 Estimated Recall
It is easy to achieve high precision if we do not address recall,
but keeping both high is rather difficult. The recall of a query
is much harder to calculate than the precision because Dt, the
set of all relevant documents in the web, is unknown. We es-
timated Dt from the results returned from a general-purpose
search engine. Most search engines show the total number of
documents that matched the query. We can calculate the esti-
mated number of relevant documents in the search engine’s in-
dex (Reldocindex) by using the average precision of the query
for the top 1000 returned documents.

Reldocindex �

Figure 9: Precision of queries forwarded to a general-purpose
search engine

(The number of document found with the input query)

×(Average precision of the input query)

The number of relevant documents found with the spice-
extended query can be calculated in the same way.

Reldocspice �
(The number of document found with the query

with keyword spices )



Figure 10: Precision of the query “pork AND salt” forwarded
to Goo

×(Average precision of the query with keyword spices)

It is reasonable to use Reldocindex because we have no
consistent way of finding web pages that are not linked to any
general-purpose search engine. We estimate the recall of a
spice-extended query as follows

R � Reldocspice

Reldocindex

Table 4 shows the estimated recall values of different spice-
extended queries over the index of Goo. The high value of
recall (higher than 87%) indicates that our method filters out
only non-relevant documents and does not drop any useful in-
formation in the search process.

To compare these results with the example in the Introduc-
tion, Figure 10 shows the results of submitting the query “pork
AND salt” to Goo. The average precision and estimated re-
call for the top 1000 returned documents are 0.674 and 0.871,
respectively. This shows that our systematic method yields a
great improvement in search performance.

5 Conclusion
We have proposed a novel method for domain specific web
searches that is based on the idea of keyword spices; Boolean
expressions that are added to the user’s input query to im-
prove the search performance of commercial search engines.
This method allows us to build domain-specific search en-
gines without any domain heuristics. We described a practi-
cal learning algorithm to extract powerful but comprehensive
keyword spices. This algorithm turns complicated initial de-
cision trees to small Boolean expressions that can be accepted
by search engines. Our experiments with an external general-
purpose search engine yielded good results. For two different
keywords in the field of cooking, precision was higher than
97%. High estimated recall(higher than 87%) over the search
engine’s index was also confirmed.

We used the domain of cooking as an example, and we
are now developing search services for other domains such as
restaurant pages and personal homepages.

In this paper, we used input keywords selected by humans
to make training examples. To be more comprehensive, we

need some criteria with which input keywords can be se-
lected. As discussed in Section 3, it is sufficient to make ex-
amples based on the distribution of user’s input query p(k).
We are planning to open our recipe search system to the pub-
lic through the web and we will obtain the value of p(k) after-
wards. In future work we will study how the input keywords
used to form the training examples affect the performance of
the system.
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