
Multi-State Commitment Search

Yasuhiko Kitamura*, Makoto Yokoo**, Tomohisa Miyaji*, and Shoji Tatsumi*

*Faculty of Engineering, Osaka City University
3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
fkitamura,miya,tatsumig@kdel.info.eng.osaka-cu.ac.jp

**NTT Communication Science Laboratories
2-4 Hikaridai, Seika-cho, Soraku-gun, Kyoto 619-0237, Japan

yokoo@cslab.kecl.ntt.jp

Abstract

We propose the Multi-State Commitment (MSC)
method to speed-up heuristic search algorithms for
semi-optimal solutions. The Real-Time A* (RTA*)
and the Weighted A* (WA*) are representative heuris-
tic search algorithms for semi-optimal solutions and
can be viewed as a single-state and an all-state com-
mitment search algorithms respectively. In these al-
gorithms, there is a tradeo� between the risk of mak-
ing wrong choices in search process and the amount
of memory for the recovery, with RTA* and WA* be-
ing the extremes. The MSC method introduces a mod-
erate and exible characteristic into these algorithms
and can increase the performance dramatically in prob-
lems such as the N-puzzle. In this paper, by intro-
ducing a commitment list, we show a modi�cation of
RTA* and WA* to their MSC versions without vio-
lating their completeness. Then, we experiment with
their performance in maze and N-puzzle problems, and
discuss conditions that the MSC method is e�ective.

1 Introduction

Problem solving in arti�cial intelligence can be formal-
ized as a search process to �nd a solution path from the
initial state to a goal state in a given state space graph.
However, as the size of the state space graph increases,
it becomes di�cult for a simple search algorithm to
�nd a solution with a practical amount of time and
memory. To overcome this drawback, heuristic search
algorithms such as the A* algorithm have been pro-
posed that incorporate heuristic knowledge into their
state evaluation functions [12].
Although the A* algorithm guarantees �nding an

optimal solution, it is more practical to �nd a semi-

optimal solution in an allowable time period than
to �nd an optimal solution taking more time. Such
semi-optimal solution search algorithms include the
Weighted A* (WA*) [12] and the Real-Time A*
(RTA*) [8].
There is an apparent di�erence in the RTA* and

WA* algorithms for �nding a state to expand. WA*
stores all the states in its search front as its expansion
candidates, but RTA* reduces its candidates to only
child-states of the previously expanded state. From
a viewpoint of commitment in search process, RTA*
is a single-state commitment (SSC) search because it
limits the range of further search to descendants of a
single state which has been just expanded. On the
other hand, WA* is an all-state commitment (ASC)
search since it does not limit the range at all.1

A semi-optimal solution search algorithm generally
repeats a decision to choose a state to expand among
one or more candidates, but a wrong choice may make
the search to a goal state longer or infeasible. Hence,
a SSC search like RTA*, which commits its further
search to a single candidate, tends to degrade its per-
formance because of making wrong choices. On the
other hand, for easy recovery from wrong choices, it
may be a good method to store all the candidates in
the OPEN list as in WA*. However, this method can
quickly consume memory as the search front spreads
out and may actually make it infeasible to �nd a so-
lution. Hence, there is a tradeo� between the risk of
making wrong choices and the cost of memory for re-
covery, and SSC, such as RTA*, and ASC, such as
WA*, are the extremes.
In this paper, we propose the Multi-State Commit-

ment (MSC) method, that has a parameter n, which

1 It can be viewed as a no-state commitment search because
committing all states is equivalent to committing no state.

introduces a moderate and exible characteristic to
SSC and ASC. SSC and ASC are identical to MSC
when n = 1 and n = 1 respectively. MSC is exible
to balance the risk of making wrong choices and the
cost of memory for recovery by changing n. In the fol-
lowing sections, we describe an incorporation of com-
mitment list into the WA* and RTA* algorithms to
modify them to their MSC versions without violating
their completeness. Then, we apply these MSC search
algorithms to maze and N-puzzle problems and show
its remarkable e�ect on N-puzzle problems. Finally, we
discuss conditions that MSC shows good performances
and refer to related work.

2 Heuristic Search

A problem is given as a quadruplet hS;O; s0; Gi where
S(6= �) is a set of states, O is a set of operators, s0(2
S) is the initial state, and G(� S) is a set of goal
states. The tuple hS;Oi is called its state space graph.
A child-state s0 is generated by applying an operator
o = (s; s0) to a state s. A state is said to be expanded
when all of its child-states are generated.
A sequence of states obtained by successive operator

applications is called a path, and a solution (path) is a
path from the initial state to a goal state. If a search
algorithm is able to �nd a solution when there is at
least one, the algorithm is said to be complete. When a
cost (> 0) is given to each operator, the solution cost is
de�ned as the cost sum of the operators that construct
the solution. A solution with cost c is optimal if there
is no solution with cost less than c.
Heuristic search algorithms utilize a state evaluation

function, or heuristic function, h(s) that estimates the
least distance from the state s to a goal state. When it
does not overestimate the real distance, the heuristic
function is said to be admissible.

3 Multi-State Commitment WA*

3.1 WA* algorithm

In the evaluation of a state s, the A* algorithm uses
f(s) = g(s)+h(s) where g(s) is the estimated cost from
the initial state to s, and WA* uses a weighted version
of f(s), namely f(s) = (1 � W)g(s) + Wh(s) where
0 � W � 1. Generally, as W increases, WA* �nds a
solution quicker but the solution quality worsens. In
this paper, since we mainly have interest in the search
speed for a semi-optimal solution, we deal with cases
of W = 1 only in the following discussion.
Like A*, WA* uses two lists called an OPEN and

a CLOSED lists. Generated states are stored once in
the OPEN list and expanded states are moved into the

WA*
1: s s0;
2: generate successors(s);
3: if successors(s) \G 6= � then return success;
4: add(OPEN; successors(s));
5: add(CLOSED; s);
6: if OPEN = � then return failure;
7: s get min(OPEN);
8: goto 2;

Figure 1: WA* algorithm.

CLOSED list, so it is guaranteed that generated states
are in either the OPEN or CLOSED list. Hence, WA*
is able to avoid generating an identical state twice by
checking these lists.2

We show a WA* algorithm in Figure 1. WA* begins
with the initial state (Line 1). It expands a state and
generates child-states, but it does not generate any
states which are in OPEN or CLOSED (Line 2). If
there is a goal state in generated states, then it ends
with success (Line 3). Otherwise, it adds generated
states to OPEN (Line 4) and the expanded state to
CLOSED (Line 5). If OPEN is empty, then the search
ends with failure (Line 6). Otherwise, it chooses a
state with the lowest h from OPEN (Line 7), and re-
peats the process (Line 8). Hereafter, these operations
are counted as a single step.

3.2 MSC-WA* algorithm

WA* is an ASC search algorithm because it stores all
the generated states in the OPEN list and chooses an
expansion state from there. The Multi-State Com-
mitment WA* (MSC-WA) limits the number of can-
didates to n, so we introduce a COMMITMENT list
into WA* and modify it so that generated states are
added to COMMITMENT, not OPEN, and an expan-
sion state is chosen from COMMITMENT. MSC-WA*
maintains the length of COMMITMENT at less than
or equal to n. When the length is greater than n, it
moves states to OPEN in a decreasing order from the
highest h. If less than n, it moves states from OPEN
in an increasing order from the lowest h while OPEN is
not empty. Operations in CLOSED are the same as in
WA*. Hence, even in MSC-WA*, it is guaranteed that
generated states are in the COMMITMENT, OPEN,

2 When we have interest in the solution quality, WA* should
regenerate a state (move a state from the CLOSED list to the
OPEN list) when its f is improved. In this paper, we have more
interest in the search speed and a �xed f(s)(= h(s)), so we do
not incorporate such operations into the algorithm.

MSC-WA*
1: s s0;
2: generate successors(s);
3: if successors(s) \G 6= � then return success;
4: add(COMMITMENT; successors(s));
5: add(CLOSED; s);
6: while length(COMMITMENT) > n do
7: s get max(COMMITMENT);
8: add(OPEN; s);
9: while (length(COMMITMENT) < n) and
10: (OPEN 6= �) do
11: s get min(OPEN);
12: add(COMMITMENT; s);
13: if (COMMITMENT = �) then return failure;
14: s get min(COMMITMENT);
15: goto 2;

Figure 2: MSC-WA* algorithm.

or CLOSED list. We show a MSC-WA* algorithm in
Figure 2.
MSC-WA* does not generate child-states which are

in either of COMMITMENT, OPEN, or CLOSED
(Line 2), and adds generated states to COMMIT-
MENT (Line 4). It adds the expanded state to
CLOSED (Line 5). The length of COMMITMENT
list is maintained at less than or equal to n (Line 6-
12). If COMMITMENT is empty, then it ends with
failure (Line 13). Otherwise, it chooses a state with
the lowest h from COMMITMENT for the next ex-
pansion(Line 14). Ties are broken randomly.
MSC-WA* is equivalent to WA* when n =1.

3.3 Completeness of MSC-WA*

Here we show that MSC-WA* is complete. The com-
pleteness of WA* is guaranteed when there is at least a
path from the initial state to a goal state and the state
space graph is �nite. This is because WA* does not
fall into an in�nite loop as it does not expand an iden-
tical state more than once, and because also it keeps
at least a state on a solution path in the OPEN list
before it terminates.
As with WA*, MSC-WA* terminates without falling

into an in�nite loop because it does not expand an
identical state more than once. If it ends with failure,
COMMITMENT must be empty (Line 13), and OPEN
also must be empty because of the operations in Lines
9-12. However, since at least one state is on a solution
path in COMMITMENT or OPEN, they cannot be
simultaneously empty, and MSC-WA* never ends in
failure. Hence, MSC-WA* is complete when there is

RTA*
1: s s0;
2: generate successors(s);
3: if successors(s) \G 6= � then return success;
4: update h(s);
5: if successors(s) = � then return failure;
6: s get min(successors(s));
7: goto 2;

Figure 3: RTA* algorithm.

at least a solution and the state space graph is �nite.

4 Multi-State Commitment RTA*

4.1 RTA* algorithm

RTA*, proposed by Korf [8], is a semi-optimal solu-
tion search algorithm which interleaves a look-ahead
search and a move. By increasing the depth of the
look-ahead search, the solution quality is improved.
Since we mainly have interest in the search speed, we
set the depth at 1 in the following discussion. RTA*
do not use a CLOSED list like WA*, but it updates
heuristic values during its search process to guaran-
tee its completeness. We show the RTA* algorithm in
Figure 3.
RTA* begins with the initial state (Line 1) and then

generates all the child-states as expansion candidates.
When the heuristic value of a child state is 1, it is
removed from the candidates (Line 2). If a goal state
is included in the candidates, RTA* ends with success
(Line 3). It will otherwise update the heuristic value
of the expanded state s to second-best c(s; s0) + h(s0)
in those candidates where s0 is one of the child-states
of s. When there is only one or no child-state, the
heuristic value is set to be 1 because the expanded
state is not on any solution path and does not need
be expanded again (Line 4). If there is no following
expansion candidate, RTA* ends with failure (Line 5).
It will otherwise choose a state with the lowest h of
the candidates and expand it in the next step. Ties
are broken randomly (Lines 6 and 7).
It must be noted that there are two alternative inter-

pretations of the RTA* algorithm. One interpretation
is that this algorithm is a fast search algorithm that
can produce a semi-optimal solution rapidly. Another
interpretation is that this is an on-line algorithm such
that an agent is interleaving planning and actions in
the real-world. In this paper, we employ the former in-
terpretation, and try to further improve the e�ciency
of the RTA* algorithm.

MSC-RTA*
1: s s0;
2: generate successors(s);
3: if successors(s) \G 6= � then return success;
4: update h(s);
5: add(COMMITMENT; successors(s));
6: while length(COMMITMENT) > n do
7: remove max(COMMITMENT);
8: if COMMITMENT = � then return failure;
9: s get min(COMMITMENT);
10: goto 2;

Figure 4: MSC-RTA* algorithm.

4.2 MSC-RTA* algorithm

RTA* is a SSC search algorithm that limits the candi-
dates for the next expansion to descendants of a single
state. Here we enlarge the range by modifying RTA*
to MSC-RTA*. As with MSC-WA*, we incorporate a
COMMITMENT list into RTA* and store some of gen-
erated states in the list as expansion candidates. The
length of COMMITMENT is maintained at less than
or equal to n. When it is greater than n, MSC-RTA*
removes states fromCOMMITMENT in decreasing or-
der from the highest h. We show a MSC-RTA* algo-
rithm in Figure 4.

Lines 5 through 8 in Figure 4 of MSC-RTA* are sub-
stituted for line 5 and 6 in Figure 3 of RTA*. Namely,
each of generated states is stored once in the COM-
MITMENT list if it is not in it (Line 5). The length of
COMMITMENT is maintained at less than or equal
to n. If it is greater than n, MSC-RTA* removes states
from COMMITMENT in a decreasing order from the
highest h (Lines 6 and 7). Then, if COMMITMENT
is empty, it ends with failure (Line 8). It will oth-
erwise choose a state with the lowest h from COM-
MITMENT for the next expansion. Ties are broken
randomly (Line 9).
MSC-RTA* is equivalent to RTA* when n = 1.

4.3 Completeness of MSC-RTA*

RTA* is complete when, a goal state is reachable from
all the states, the initial value of every h is �nite, and
the state space graph is �nite [8].
We here show that the completeness of RTA* is pre-

served even if we modify it into MSC-RTA*. Because
the initial value of every h is �nite and there is at least
a path from the initial state to a goal state, MSC-RTA*
never fails with the in�nite h value of every states sur-
rounding the goal state.

MSC-RTA* never falls into an in�nite loop because
of the following reasons. If it fell into an in�nite
loop, a goal state could not be on the loop. The h

value of an expanded state s is updated to second-best
h(s0) + c(s; s0) where s0 is a child-state and c(s; s0) is
greater than 0, so the updated h value is greater than
the best h among its child-states. Hence, every trip
of MSC-RTA* around the in�nite loop increases the
lowest h on the loop so the h values of all states on
the loop increase without bound. At some point, since
the h value of a state on the loop will be greater than
that of a state not on the loop, the algorithm will es-
cape from the loop. The number of states is �nite, so
it eventually reaches a goal state. MSC-RTA* is com-
plete because this characteristic is preserved for every
n.

5 Experimental Performance Analysis

To evaluate the performance of the MSC method, we
executed experiments using maze and N-puzzle prob-
lems.

A maze is a 120�120 grid space where the entrance
is located at (0,0) and the exit is located at (119,119),
and its solution is a path from the entrance (initial
state) to the exit (goal state). In the grid space, ob-
stacles are located randomly at a ratio of 40%. There
are four operations; moving UP, DOWN, RIGHT, and
LEFT, with the cost of 1. The heuristic function of
a state is given as the Manhattan distance from it to
the goal state.

For the N-puzzle, we use a 48-puzzle with 48 num-
bered tiles arranged on a 7 � 7 board. The goal is
to transform the given initial state to the goal state,
where the tiles are sorted, by sliding tiles onto an
empty square. There are four operators that move
the empty square UP, DOWN, RIGHT, and LEFT,
with the cost of 1. The heuristic function of a state is
given as the Manhattan distance's sum of misplaced
tiles.

We prepared 100 mazes with randomly generated
obstacle patterns and with at least a solution, and 100
solvable puzzles with di�erent initial patterns. Chang-
ing n, we executed 100 trials for each combination of
MSC-RTA* or MSC-WA* and a problem. Since there
is a memory bound for the computer used in the ex-
periments, we aborted the algorithmwhen the number
of states in all lists exceeded 1.5 million.

We show the obtained results of MSC-WA* in Ta-
ble 1 (maze) and Table 2 (puzzle) and those of MSC-
RTA* in Table 3 (maze) and Table 4 (puzzle). The
�gure in parentheses after the algorithm name repre-
sents n. The Success Rate is the percentage of suc-

cess without abortion due to the memory bound. The
Search Steps and the Solution Length are the averages
of successful trials.
In maze problems, neither of MSC-WA* or MSC-

RTA* show any remarkable improvement for any n.
In puzzle problems, on the contrary, both algorithms
showed remarkable improvements. In contrast to
WA*, which solved only 10% of the problems due to
the lack of memory, MSC-WA*, with n = 4, solved
all the problems. It is interesting that n = 4 had the
best result and more or less than that makes the per-
formance worse. The performance of WA* looks well
concerning the solution length, but this means WA*
found only short solutions and failed with abortion for
long ones.
In experiments with MSC-RTA*, RTA* could solve

none of the problems, whereas, MSC-RTA*, with n =
2 through 6, solved all of the problems. The perfor-
mance was best when n = 3, and it degraded when n

was greater or less than 3.
Due to the length of this paper, we omitted the re-

sults of 24-, 35-, and 63-puzzles, however, the algo-
rithms showed similar performance and we believe this
dramatic performance improvement can be achieved in
any N-puzzles.

6 Discussion

The experimental results in the previous section show
the MSC method improves the search performance
dramatically in N-puzzle problems. On the other
hand, it does not improve the performance in maze
problems. In the following subsections, we discuss
about the following questions.

� Why is the MSC method e�ective at N-puzzles,
but not at mazes?

� Why is the performance improvement at N-
puzzles so devastating?

6.1 Wrong Choice and Recovery

A semi-optimal solution search algorithm repeats a
choice of an expansion state from one or more can-
didates and a wrong choice makes the search process
longer or infeasible. Since a SSC search algorithm like
RTA* limits the candidates to a single state, a wrong
choice may cause a fatal result. On the other hand, be-
cause an ASC search algorithm like WA* stores all of
the candidates, it expands the search front widely and
consumes too muchmemory space in �nding a solution
actually. A MSC search algorithm is somewhere in the
middle of these two methods and is balanced between

S0

S1 S2

SG

SG(S1)

SG(S2)

Figure 5: A search graph.

the risk of making wrong choices and the amount of
memory for recovery by changing n, which is the max-
imum length of commitment list.
Here we explain the problems where MSC shows

better performance than SSC by using a search graph
shown in Figure 5. This search graph has an initial
state s0 with two child-states s1 and s2. Each of these
child-states starts a partial graph search of SG(s1) and
SG(s2) respectively. We assume the search in SG(s1)
takes a long time to reach a goal state sG while that in
SG(s2) takes a short time. We also assume the heuris-
tic function is misleading, namely h(s1) � h(s2), and
causes a wrong choice.
In this problem, SSC behaves as follows. It begins

with s0 and generates the child-states s1 and s2. Then,
it chooses s1 as the next state to expand due to the
misleading h, proceeds to the search in SG(s1), and
takes a long time to reach a goal state.

On the other hand, MSC behaves as follows. As
with SSC, it begins with s0, generates the child-states
s1 and s2, and chooses s1 as the next state to expand.
However, it stores s2 in the commitment list as another
candidate. Hence, since h(s2) eventually becomes the
minimum in the commitment list during the search in
SG(s1), MSC aborts the search in SG(s1), restarts it
from s2, and reaches the goal state.
Hence, if MSC can abort the search in SG(s1), it

shows a better performance than SSC. In other words,
it is required that s2 has been stored in the commit-
ment list and h(s2) becomes lowest in it before ter-
minating the search in SG(s1). Generally, a larger n
raises the probability that s2 is stored.
On the other hand, MSC may cause a side e�ect

Table 1: Performance of MSC-WA* in maze.

Algorithm Success Search Solution
Rate Steps Length

MSC-WA*(1) 100 1233.4 (728.0) 383.2 (58.3)
MSC-WA*(2) 100 1228.8 (717.0) 374.1 (55.3)
MSC-WA*(3) 100 1223.2 (708.4) 373.6 (55.9)

MSC-WA*(4) 100 1232.6 (712.3) 373.8 (55.5)
MSC-WA*(5) 100 1231.1 (710.3) 373.3 (55.2)
MSC-WA*(6) 100 1223.2 (712.6) 373.3 (55.3)

WA* 100 1229.9 (713.4) 373.5 (55.7)
Figures in parentheses are standard deviations.

Table 2: Performance of MSC-WA* in puzzle.

Algorithm Success Search Solution
Rate Steps Length

MSC-WA* (1) 38 370374.0 (154466.0) 9495.0 (3554.9)
MSC-WA* (2) 97 190507.0 (142192.3) 9470.7 (2773.3)

MSC-WA* (3) 98 134848.0 (106015.8) 10180.7 (3433.3)
MSC-WA* (4) 100 120051.0 (93780.7) 11138.1 (3919.0)
MSC-WA* (5) 96 133266.0 (116221.0) 11584.8 (5316.8)

MSC-WA* (6) 99 157416.0 (146266.5) 11622.1 (6413.2)
WA* 10 189241.9 (118754.7) 3151.0 (619.7)

Figures in parentheses are standard deviations.

Table 3: Performance of MSC-RTA* in maze.

Algorithm Success Search Solution
Rate Steps Length

RTA* 100 7413.1 (10684.8) 363.5 (45.3)

MSC-RTA*(2) 100 7852.9 (11200.9) 359.1 (43.7)
MSC-RTA*(3) 100 7918.5 (11354.8) 358.5 (44.0)
MSC-RTA*(4) 100 8005.1 (11508.4) 358.3 (43.7)

MSC-RTA*(5) 100 8108.2 (11672.7) 358.1 (43.8)
MSC-RTA*(6) 100 8104.4 (11689.5) 358.2 (43.9)

Figures in parentheses are standard deviations.

Table 4: Performance of MSC-RTA* in puzzle.

Algorithm Success Search Solution
Rate Steps Length

RTA* 0

MSC-RTA* (2) 100 155770.4 (126556.7) 44569.4 (29959.8)
MSC-RTA* (3) 100 93822.0 (60623.8) 23426.4 (14501.8)
MSC-RTA* (4) 100 120639.8 (97361.6) 21230.7 (15697.6)

MSC-RTA* (5) 100 181777.7 (182889.3) 24243.4 (31071.7)
MSC-RTA* (6) 100 210496.5 (214838.1) 24511.4 (27474.1)

Figures in parentheses are standard deviations.

Figure 6: Maze and its heuristic values.

in the following case. Let us assume that the size of
SG(s1) is smaller than that of SG(s2). In this case,
if MSC aborts the search in SG(s1) and restarts it in
SG(s2), the performance will su�er. Moreover, if there
are more alternatives than s1 and s2 and their h values
look equally good, MSC may degrade its performance
more. This is a reason for performance degradation
when n is too large and for the MSC's superiority to
ASC.

From the above discussion, MSC shows better per-
formance if the heuristic function is misleading (Con-
dition 1) and if MSC can abort the search (Condition
2). Now, let us analyze whether these conditions are
satis�ed with the maze and N-puzzle problems that
are used in the experimental performance analysis.

Figure 6 shows a maze. Its size is 6� 6, the initial
state is (0,0), and the goal state is (5,5). The heuristic
value of a state is the Manhattan distance to the goal
state and it is written in the corresponding grid. These
heuristic values satisfy Condition 1 from the following
discussion. The initial state (0,0) has two child-states
(0,1), which corresponds to s2, and (1,0), which cor-
responds to s1. Choosing (0,1) leads to the goal state
and is apparently a correct choice. However, both of
heuristic values are identical so this fact may cause a
wrong choice. However, Condition 2 is not satis�ed.
This is because the h value of another candidate (0,1),
which corresponds to s2, is not less than all of the
states in SG(s1) as shown in Figure 6. Hence, s2 is
not chosen from the commitment list regardless of n
during the search in SG(s1) so MSC is not expected
to be e�ective in such maze problems.

Figure 7 shows a partial state space graph of a 15-
puzzle where the initial state is A and the goal state
is G. This problem satis�es Condition 1. Namely, it is
di�cult to choose a right candidate because the heuris-

Figure 7: 15-puzzle and its partial state space graph.

tic values of the candidates B, C, D, and E, which
are the child-states of the initial state A, are identical
(h = 10). In this case, choosing B is a wrong choice
as we discuss in the next subsection. In addition, this
N-puzzle also satis�es Condition 2. That is because
the h values of child-states B, which corresponds to
s1, are greater than that of C, which is correspond-
ing to s2. Hence, MSC eventually chooses s2 from the
commitment list, and returns to s2 from SG(s1), so it
is e�ective in N-puzzle problems. On the other hand,
as shown in Figure 7, since N-puzzle has a number
of states with an identical h value, MSC, with large
n, or ASC expands the search front too widely, and
degrades the performance or consume all the memory
before reaching a goal state.

6.2 Serializable Subgoals

MSC shows a dramatic performance improvement at
N-puzzles. As shown in Figure 5, the performance
di�erence between SSC and MSC depends on the size
of SG(s1) because SSC takes a long time for �nishing
the search in SG(s1) but MSC can abort the search at
an early stage.

We here explain that the size of SG(s1) in N-puzzles
is large by introducing the concept of serializable sub-
goals [7],[11]. A problem has serializable subgoals i�
the goal can be divided into a set of subgoals, and
there exists an ordering among the subgoals such that
the subgoals can always be solved sequentially with-
out ever violating a previously achieved subgoal in the
order [7]. For example, if we sort the bottom row of
the 15-puzzle as a subgoal, then we can always solve
the rest of the problem without disturbing the bot-
tom row. Furthermore, if we sort the right column as
the next subgoal, the original 15-puzzle problem is re-
duced to an 8-puzzle. As in Figure 8, we can assign

a level to each of subgoals depending on the order of
achievement.
Hence, in the N-puzzle, it is better to choose an ex-

pansion state so that it does not destroy the subgoal
that have already been achieved. However, the heuris-
tic value, which is the sum of the Manhattan distances
of misplaced tiles, does not reect this property. For
example, in Figure 7, since the initial state has already
achieved the level-2 subgoal, choosing state B will de-
stroy it. However, since the heuristic values of four
child-states are identical, it is di�cult to avoid the de-
struction. Once the algorithm destroys the subgoal,
it takes many steps to rebuild it, so in choosing state
B the performance is degraded. However, MSC can
return to another candidate from the commitment list
so the wrong choice of B is not so fatal.
To support our discussion, we present how sub-

goals are destroyed in 24-puzzles in Table 5. In MSC
search algorithms, we de�ne the level of achieved
subgoal as the highest one in the commitment list.
Precisely, the subgoal level at time T is de�ned as
SLT = maxs2COMMITMENTT SL(s) where SL(s) is the
subgoal level of state s. Please note this is not always
the same as the subgoal level of expanded state at time
T . Hence, the average steps to decrease subgoal level
is calculated from the whole search steps divided by
the number of events that decrease the subgoal level.
This table shows that more states with higher level

subgoal are preserved in the commitment list as n in-
creases. Therefore, even if the algorithm chooses a
state which destroys a subgoal temporally, it will eas-
ily choose another state which does not destroy the
subgoal. This e�ect is strengthened by enlarging n.

Table 5: Subgoal destruction in 24-puzzle.

Algorithm Average steps
to decrease

subgoal level

RTA* 97.9

MSC-RTA*(2) 223.0
MSC-RTA*(3) 665.3
MSC-RTA*(4) 1327.3

MSC-RTA*(5) 1972.4
MSC-RTA*(6) 2719.3

7 Related Works

One method to decrease the risk of making wrong
choices is a method called cooperative search, in which
multiple problem solvers (agents) concurrently solve
an identical problem. Since there are multiple agents,

if at least one agent can make correct choices, a so-
lution can be obtained in a reasonable amount of
time. Cooperative search methods have been applied
to constraint satisfaction problems [2, 4] and state-
space search problems [6, 5].

One drawback to these cooperative search methods
is that if agents have to make critical choices repeat-
edly, those agents that made wrong choices early are
unable to contribute to the ongoing search process.
[14] presents the multiagent real-time A* algorithm
(MRTA*) with a GA-like selection mechanism. In this
algorithm, a state-space search problem is solved con-
currently by multiple agents. Each agent executes the
RTA* algorithm, and periodically reproduces o�spring
stochastically based on its �tness de�ned by the heuris-
tic value of its current state. Experimental evaluation
results show that this algorithm is very e�ective in N-
puzzles. Our work was inspired by [14], and we show
that much simpler algorithms can obtain similar re-
sults. While agents tend to do redundant actions, i.e.,
expanding identical states in MRTA*, our algorithms
in this paper avoid the redundance. For example, in
[14], it is reported that the MRTA* algorithm with
the selection mechanism requires 35452.7 steps when
�ve agents3 solve the 48-puzzle problems concurrently
(177263.5 steps in all). On the other hand, MSC-RTA*
(where the length of the commitment list is 3) requires
only 93822.0 steps.

The beam search algorithm [1] is a classical method
for focusing/limiting the search e�ort. In a beam
search, expanded nodes that are not included in the
scope of the search attention are completely pruned.
As a result, the algorithm completeness cannot be
guaranteed so, for example, it can not solve many
of maze problems. In this paper, on the other hand,
the completeness of the original algorithms (RTA* and
WA*) is preserved.

A more modern method for focusing/limiting search
e�orts is a family of Limited Discrepancy Search al-
gorithms [3, 10]. These algorithms are based on a
depth-�rst search algorithm, and try to incrementally
broaden the search range by using heuristic informa-
tion. These algorithms are suited to the problems with
a known upper-bound of the search depth, such as con-
straint satisfaction problems.

One way for reducing the required memory size in
the A* algorithm is the SMA* algorithm [13], which
removes unpromising nodes from the OPEN list. This
memory-reducing method and the idea of commit-
ments introduced in this paper are not mutually ex-
clusive, and can be used simultaneously.

3 This setting gives the best result both in the total steps and
the steps for each agent.

1312 14 15

11
7

3

108 9
1312 14 15 1312 14 15

11
7

3

1312 14 15

11
7

3

108 9

6

2

level 1 level 2 level 3 level 4

Figure 8: Achievement of subgoals.

The recursive best-�rst search (RBFS) algorithm [9]
can run in linear space. However, as reported in [9],
this algorithm does not work well when f(s) = h(s).
This is because the RBFS tends to explore all possible
paths to a given node, and the number of duplicate
nodes explodes as the search depth increases.

8 Conclusion

In this paper, we introduce the Multi-State Commit-
ment method, which limits the search range, to two
semi-optimal solution search algorithms, WA* and
RTA*. We then evaluate their performance in maze
and N-puzzle problems and show a dramatic perfor-
mance improvement in N-puzzle problems. We also
present required conditions for performance improve-
ment that are satis�ed in N-puzzles and the relation
to serializable subgoals.
The MSC method which uses a commitment list is

a generic method to improve search e�ciency, so in
the future, we will apply this method to other kinds
of algorithms and problems. In this paper, we do not
discuss the optimal value of the parameter n. We guess
this depends on the character of problem and leave it
as an open problem. It is also interesting to provide a
dynamic method to adjust n during a search process.

References

[1] Bisiani, R. 1992. Beam search. In Shapiro, S. C.,
ed., Encyclopedia of Arti�cial Intelligence. New
York: Wiley-Interscience Publication. 1467{1468.

[2] Clearwater, S. H.; Huberman, B. A.; and Hogg,
T. 1991. Cooperative solution of constraint sat-
isfaction problems. Science 254:1181{1183.

[3] Harvey, W. D., and Ginsberg, M. L. 1995. Lim-
ited discrepancy search. In Proceedings of the
Fourteenth International Joint Conference on Ar-
ti�cial Intelligence, 607{613.

[4] Hogg, T., and Williams, C. P. 1993. Solving the
really hard problems with cooperative search. In
Proceedings of the Eleventh National Conference
on Arti�cial Intelligence, 231{236.

[5] Kitamura, Y.; Teranishi, K.; and Tatsumi, S.
1996. Organizational strategies for multiagent
real-time search. In Proceedings of the Second In-
ternational Conference on Multi-Agent Systems,
150{156.

[6] Knight, K. 1993. Are many reactive agents better
than a few deliberative ones? In Proceedings of
the Thirteenth International Joint Conference on
Arti�cial Intelligence, 432{437.

[7] Korf, R. E. 1988. Search in AI: A Survey of
Recent Results. In Shrobe, H. E., ed., Exploring
Arti�cial Intelligence . Morgan-Kaufmann.

[8] Korf，R. E. 1990. Real-time heuristic search.
Arti�cial Intelligence, 42(2-3):189-211.

[9] Korf, R. E. 1993. Liner-space best-�rst search.
Arti�cial Intelligence, 62(1):41-78.

[10] Korf, R. E. 1996. Improved limited discrepancy
search. In Proceedings of the Thirteenth National
Conference on Arti�cial Intelligence, 286{291.

[11] Newell, A. and Simon, H. A. 1972. Human Prob-
lem Solving. Prentice-Hall.

[12] Pearl, S. 1984. Heuristics: Intelligent
Search Strategies for Computer Problem Solving.
Addison-Wesley Publishing Company.

[13] Russel, S. 1992. E�cient memory-bounded search
method. In Proceedings of the Tenth European
Conference on Arti�cial Intelligence, 1{5.

[14] Yokoo, M., and Kitamura, Y. 1996. Multiagent
real-time-a* with selection: Introducing competi-
tion in cooperative search. In Proceedings of the
Second International Conference on Multi-Agent
Systems, 409{416.

