
A Multi-agent Based Intelligent WWW Interfacer 
 

Yasuhiko KITAMURA 
Faculty of Engineering, Osaka City University 

3-3-138, Sugimoto, Sumiyoshi-ku, Osaka, 558-8585, JAPAN 
Phone & Fax: +81-6-6605-3081, E-mail: kitamura@info.eng.osaka-cu.ac.jp 

 

Introduction 
The WWW technology is rapidly proliferating into our society and, as an infrastructure 
that supports our daily life, it is widely used for various purposes such as e-commerce, 
research and education, personal or group information dissemination, special interest 
community creation and so on. The amount of WWW information increases very 
rapidly day by day, but that makes retrieving information more and more. Search 
engines are most widely used tool to retrieve information from the WWW, but it is not 
always very useful for novice users such as aged people. For example, when a user 
wants to know a recipe for pork, he/she may submit just “pork” as a keyword to a 
search engine, then he/she may get stuck with a large number of URLs including not 
only about recipes but also about farming, retailers, restaurants, and so on. 

Generally speaking, there are two ambiguities concerning WWW information 
retrieval by using a search engine. The first ambiguity is about information sources. 
Currently the HTML is mainly used to describe WWW pages, but it is not well 
equipped for specifying semantic information in the pages. Hence, a standard search 
engine hits a page just when the page includes the specified keywords. The second 
ambiguity is about user’s queries. For example, when a user submits a keyword “pork”, 
he/she may have an intention like “I would like to cook a dish with pork. Yesterday I 
cooked a Chinese dish, so today a Japanese one. I am on diet now, so I prefer a 
low-calorie one.” in his/her background. Of course, current search engines cannot 
accept the above intention as it is, they just can accept a few keywords that include in 
the intention. 

To deal with the above ambiguities, we are currently developing a multi-agent based 
intelligent WWW interfacer as shown in Figure 1. Our system consists of multiple 
information agents, each of which provides domain specific information, and a personal 
agent, which manages its user ’s profile information. Each agent has its own character 
interface and an information retrieval task is represented through dialogues between the 
user and the personal agent and between the personal agent and information agents. 



 

Figure 1: System Architecture. 

In our system, to deal with the ambiguity of information sources, we utilize domain 
specific information agents. An information agent provides information concerning a 
particular domain such as recipes, restaurants, retailers, and so on. We expect the 
information agents cannot only provide noiseless information but also facilitate abilities 
of extracting more detailed information (ex. extracting ingredients from a recipe page) 
and integrating information from multiple sources (ex. relating ingredients to retailers 
that carry them). 

To deal with the ambiguity of user’s query, we utilize the multi-character interface. In 
the interface, the process of information retrieval is represented to the user through 
interactions and dialogues among character agents. When an agent makes a mistake 
about understanding the user ’s intention, the user can point out the mistake directly to 
the agent. We expect, through the interaction between the user and the agents, the agents 
can naturally learn the user’s intention. 

In the following, we describe “keyword spice”, a technology that agentizes a generic 
search engine into a domain specific information agent, and more about the 
multi-character interface. 
 

Keyword Spice1 
A flaw of search engine is that, when a user submits a simple keyword, it returns a large 
number of various WWW pages that relate to the keyword. To reduce the number of 
pages, the user usually adds some more keywords, but how appropriate the additional 

                                                 
1 We are currently studying keyword spice by using a Japanese search engine, so the 
keyword spices found discussed in this paper may not work well for non-Japanese 
search engines. 



keywords are seems to depend on the experience of the user. For example, when we 
want to retrieve recipe pages for pork, it is more effective to submit “pork, ingredient” 
than “pork, recipe.” Moreover, the keyword “ingredient” is effective in not only for 
“pork” but also for other recipe keywords such as “beef” and “chicken.” Using this 
technique, we can build a domain specific search engine (or information agent) from a 
generic search engine just by adding some keywords, which we call keyword spices. 

Here we show how to find domain specific keyword spices as follows. 
 
1. Collect a set of WWW pages, which is denoted to be S, by using a generic search 

engine by submitting domain specific keywords (ex. pork, beef, chicken, and so 
on.) 

2. Classify S into the set of domain (ex. recipe) related pages, which is denoted to be T, 
and the set of unrelated ones, which is denoted to be F. 

3. Select frequent keywords (ex. top 50) that appear in the set T. The keywords are 
called keyword spice candidates. 

4. Calculate the appropriateness ratio A(c) of each candidate c, which is defined to be 
A(c)=(the number of pages in T that include c)/(the number of pages in S that 
include c). 

 
 A candidate with the large A(c) can be a keyword spice. Multiple keyword spices can 
be used in a multiplicative way. For example, we can use a keyword spice (ex. 
ingredient or direction) to retrieve recipe pages. Moreover, we can add more keyword 
spices to retrieve more specific recipe pages such as Japanese dishes (kelp or mirin can 
be used as a more specific keyword spice), Western dishes (cream, wine, or butter), or 
Chinese dishes (sesame oil, ginger)  
 From a viewpoint of information retrieval, keyword spice is a technique to improve the 
precision of search engine, sacrificing the recall. To compensate the recall, we can 
submit an OR combination of multiple spices (ex. cream OR wine OR butter). Hence, if 
we want to retrieve Western recipe pages for pork, a query can be “pork AND 
(ingredient OR direction) AND (cream OR wine OR butter).”  

 
Multi-character Interface 
In our system, the process of information retrieval is represented as dialogues among 
the user and the agents as shown in Figure 2. 

 



 

Figure 2: Multiple Character Interface. The servant initially recommends a Japanese 
dish, but the parrot says “The user cooked a Japanese dish yesterday, so please 
recommend a Chinese dish today. ” Then, the  servant says “OK. I will recommend a 
Chinese again.” 

 Character interface is expected to be a more gentle or natural interface to humans than 
keyboards or GUI because a user can interact with a computer as if he/she 
communicates with people through dialogue. Moreover, from a business perspective 
such as e-commerce, characters add more value. For example, Pokemon, Japanese 
characters born in a computer game, produces a number of related merchandize goods 
and the amount of annual sales is reported to reach 400 billion yen in Japan and 200 
billion yen overseas. Except Pokemon, we have a number of well known characters in 
Japan such as Hello Kitty, Doraemon, and Momo to name a few. Microsoft also makes a 
great effort to develop MS-Agent for Windows and, on the Internet, life- like agents 
developed by Extempo (http://www.extempo.com), Haptek (http://www.haptek.com), 
Virtual Personalities (http://www.vperson.com), Artificial Life 
(http://www.artificial-life.com), and so on are now commercially available. 
 In a conventional character interface, a single character interacts with its user, but we 
are developing a multi-character interface where multiple characters interact with each 
other and the user.  
 An advantage of multi-character interface is that it can contribute to a multi-agent 
system that tries to learn user’s intention or preference. A multi-agent system consists of 
intelligent agents, each of which has some parameters to be set according to the user’s 
intention or preference to show some intelligent and adaptive behavior, but the problem 



is how to learn the intention or preference in a distributed manner. Our multi-character 
interface can be a solution to this problem. Let us discuss with the following scenario. 
 
(1) User->Personal Agent: “I would like to have a recipe for pork.” 
(2) Personal Agent->User: “OK. I will call a recipe agent.” 
(3) Personal Agent->Recipe Agent: “Yesterday you recommended a Japanese recipe, so 

today please recommend a Chinese recipe for pork.” 
(4) User->Personal Agent: “I would like to have a Japanese recipe.” 
(5) Personal Agent->Recipe Agent: “Please recommend a Japanese recipe for pork.” 
(6) Recipe Agent->User: “How about this?” 
(7) User->Recipe Agent: “It looks too much calories. Please recommend another one in 

low calories.” 
 
 Here we assume that the personal agent manages a query log and can advise the recipe 
agent to recommend a type of dishes considering the log and that the recipe agent can 
recommend recipes considering the calorie. The problem here is that both agents do not 
know the preference (the type of dish or the amount of calorie) exactly at the initial 
stage. In the multi-character interface, as the process of recipe recommendation is 
visually presented through dialogues among agents, so the user can easily notice the 
mistake of an agent and can point out the mistake directly to the agent as shown in (4) 
and (7) in the above scenario. 

 
Conclusions 
In this paper, we propose a multi-agent based intelligent WWW interfacer. To deal with 
the ambiguities of information sources and user’s query, we developed keyword spice 
and multi-character interface technologies and show their potentials. 
 

Acknowledgement 
This paper reports a part of work done by a joint project of Kyoto University, Osaka 
City University, SANYO Electric, NTT West, and NTT Comware at LIST (Laboratories 
of Image Information Science and Technology) subsidized by NEDO (New Energy and 
Industrial Technology Development Organization). I thank Prof. Toru Ishida for his 
helpful support as the project leader and Teruhiro Yamada and Takashi Kokubo for their 
efforts at the development of the system. 


