Instrogram: A New Musical Instrument Recognition Technique Without Using Onset Detection Nor F0 Estimation

Abstract
- Task: Instrument recognition in polyphony
- Problem: Need to estimate onsets and F0s
- Solution: New framework based on instrogram
 - Calculate instrument existence probabilities for every (time, freq.)
 - Visualize them like a spectrogram
 - No need to estimate onsets nor F0s

1. Our task
Musical instrument recognition
- To recognize what instruments are played from polyphonic audio signals
- A key technology for various applications:
 - Music information retrieval (MIR)
 - Multimedia content annotation (e.g. MPEG-7)
 - Automatic music transcription

I wanna listen to “string quartet” now.
I need “piano sonata.”

2. Conventional framework
Notewise sequential framework
- First, estimate the onset time and F0 of every note
- And then, identify the instrument for each note

Two critical problems
- Accurate estimation of the onset time and F0 of every note is required.
- These estimation is not easy in polyphonic music
- Once the preceding estimation fails for some notes, identifying their instruments are impossible.

4. Algorithm for calculating instrogram
The instrument existence probability is calculated as the product of a nonspecific instrument existence probability and a conditional instrument existence probability

Formulation
- Calculate instrument existence probability $p(\omega; t, f)$ at every t and f for every $\omega \in \Omega$
- Assume that more-than-one instruments are not played at the same time and frequency

$$p(\omega_1, \omega_2; t, f) = 0$$

$$p(\omega; t, f) = p(X; t, f) \cdot p(\omega|X; t, f)$$

Extract 28 features with sliding the window by Δt
- e.g. Spectral centroid, power decay speed

The same modeling as speech recognition is applied

Visualize them like a spectrogram

No need to estimate onsets nor F0s
3. Our solution

Instrogram
Spectrogram-like graphical representation of instrument existence probability.

- Recognize the instrument not for every note but for every (t, f)
- No need to estimate onsets nor F0s

Instrogram obtained from “Auld Lang Syne” played on piano, violin, and flute.

5. Experiments

I. Synthesized trio music “Auld Lang Syne”

(a) Flute+Violin+Piano
(b) Violin+Clarinet+Piano
(c) Violin+Violin+Piano
(d) Piano+Clarinet+Piano
(e) Piano+Violin+Piano
(f) Piano+Piano+Piano

II. Real performances (taken from RWC Music DB)

(a) RM-C014 (Strings)
(b) RM-C019 (Piano+Strings)
(c) RM-J001 (Piano)

6. Discussions

I. Relation to people’s music listening

- Listening to Music ≠ Obtaining Score
 - They can understand music without mentally representing it as a score
 - They can search for piano music even if not recognize every note

⇒ Instrogram enables non-score-based music understanding

II. Potential Applications

- MPEG-7 Annotation
 (e.g. when each instrument starts & stops playing)
 \[\omega_{t,f} = \arg\max (\omega_{t,f}) \]

\[\begin{array}{cccccccc}
\text{PF} & \text{PF} & \text{FL} & \text{FL} & \text{FL} & \text{FL} & \text{FL} & \text{FL} \\
\text{FL} & \text{PF} \\
\text{PF} & \text{PF} \\
\text{PF} & \text{PF} \\
\end{array} \]

Viterbi search

Piano begins playing = Trans. “Silence” to “PF”
Piano stops playing = Trans. “PF” to “Silence”

II. Instrumentation-similarity-based MIR

Please see demo on my laptop!