
IPSJ Transactions on System LSI Design Methodology Vol. 3 161–178 (Aug. 2010)

Invited Paper

Advantage and Possibility of Application-domain Specific

Instruction-set Processor (ASIP)

Masaharu Imai,†1 Yoshinori Takeuchi,†1

Keishi Sakanushi†1 and Nagisa Ishiura†2

This paper introduces the concept and technology of Application-domain Spe-
cific Instruction-set Processor (ASIP). First, VLSI design trend over the decades
is overviewed and processors are shown to be expected one of the main compo-
nents in the System Level Design. Then, the advantage of ASIP over General
Purpose Processor (GPP) and Application Specific Integrated Circuit (ASIC)
is illustrated. Next, processor hardware description synthesis technology, ap-
plication program development tool set generation technology, and processor
architecture optimization technology are outlined. Then, as an ASIP develop-
ment environment example, ASIP Meister is explained. Next, an application of
ASIP to medical and healthcare is introduced. Finally, the possibility of ASIP
as an important component of Multi Processor SoC (MPSoC) is discussed.

1. Introduction

The progress of semiconductor technology results in the exponential increase
of logic transistors in the VLSI chip. According to the report from ITRS 1),
the compound growth rate of the number of logic transistors in a VLSI chip is
still 58%; which means that the density of logic transistors in a VLSI chip will
become double in every 18 months, or 100 times as large in every 10 years. This
phenomena is called “Moore’s Law” named after Gordon E. Moore from Intel
Corporation 2).

On the other hand, according to a report from SEMATECH 3), the compound
growth rate of the design productivity (transistors/staff-month) is about 21%.
Therefore, the design staff-months of a typical leading-edge VLSI will increase
explosively about 30% every year, and causes a serious problem called “Design

†1 Graduate School of Information Science and Technology, Osaka University
†2 Graduate School of Science and Technology, Kwansei Gakuin University

Productivity Crisis”.
In order to overcome this difficulty, following strategies have been taken so far:

(1) To make the abstraction level of design description higher as pos-
sible,

(2) To make the design reuse rate higher as possible, and
(3) To employ the formal or semi-formal verification methods and

tools to verify the design description.
Figure 1 shows the trends in design abstraction level. Roughly speaking,

design method has been changed every decade. Each design method has its own
design granularity and the form of description.

1.1 Pre-Register Transfer Level Design
In the 1960s, the design of integrated circuit (ICs) was described as photo

masks of physical layers of ICs. In this design method, the physical structure
of IC is described as a collection of photo masks. In the 1970s, the design was
described at transistor circuit level. The design was described as a graph using
nodes as electronic circuit components, such as transistor, registers, capacitors,
and inductors, and edges as wires (connections). Such circuits are essentially the
analog circuits. In the 1980s, the design was described at logic gate level.
The design was described as a graph using nodes as logic gate level components

Fig. 1 Trend of abstraction level of Integrated System Design.

161 c© 2010 Information Processing Society of Japan

162 Advantage and Possibility of ASIP

and edges as wires (connections).
1.2 1990s: Register Transfer Level Design
In the late 1980s, logic synthesis technology brought a revolution in the VLSI

design, where the design was described as text in a Hardware Description
Language (HDL), such as VHDL and Verilog HDL. Text representation is a
sequence of characters, which is the simple and elementary data structure that
can be easily handled by computers.

This design method has the following advantage:
(1) Not only the structure of the design entity can be described, but the

function of the design entity can also be described in the HDL.
(2) The function of the design entity can be a data flow or a sequential

behavior.
(3) HDL descriptions are simulatable by a logic simulator on a computer.
(4) There is a coding guide line for logic synthesis. Properly described HDL

descriptions according to the coding guide line can be translated into logic
gate level descriptions.

1.3 2000s: Behavior Level Design
In the decade of 2000, so-called behavior synthesis or high-level synthesis

has been adopted. Where the design is described at higher level of abstraction
than in the conventional HDL description for logic synthesis. For example, the
design description in this method can be a conventional behavioral one in an
SPL (Software Programming Language), such as ANSI C, or some extension of
an SPL, such as SpecC.

While the design productivity could be improved by the behavior synthesis
compared to conventional logic synthesis using HDL, this method has following
limitations:
(1) Data type is limited to that of SPL. In order to optimize the design, data

types, such as bit width of a data item, should be specified.
(2) Parallelism and concurrency of processes, synchronization among processes

cannot be specified explicitly. In order to extract such information, design
description should be analyzed carefully.

(3) Structural information cannot be described explicitly.
Several different approaches could be taken to overcome these limitations. One

approach is to design a new language for behavior synthesis; this approach is
taken by SpecC 4). Second one is to extend some existing language such as C;
this approach is taken by Bach-C, BDL, Handel-C, etc. Another one is to use
an object oriented language, such as C++. SystemC is a new language based
on C++, where the language syntax is the same as C++, but new class libraries
are introduced to handle new data types and operations, to perform event driven
simulation 5).

The most suitable role of behavior synthesis would be to design dedicated
hardware modules. These modules can be used as building blocks in the system
design.

1.4 2010s: System Level Design
Design methods can be classified by the granularity of the building blocks used

in the design. In the System Level Design, the granularity of the building block
is quite large. Typical system level components are instruction set processors,
dedicated hardware modules, memory modules, peripheral modules, etc.

In the SoC (Systems on a Chip) design, analog circuits, RF (Radio Frequency)
circuits, MEMS (Micro Electro Mechanical Systems) sensors, and actuators can
also be integrated on the same die. If these components can be fabricated sep-
arately, they can be combined with digital modules using SiP (Systems in a
Package). Even in this case, system design should be performed taking all these
modules into account.

Among these modules, instruction set processors play an important role both in
SoC and SiP design. Design cost of SoC and SiP increases as the newly designed
modules become large and complex. Initial fabrication cost including mask cost
is tremendously increasing for fine grained nano meter fabrication process. The
total cost of the product is defined by the sum of these initial cost and production
cost.

The largest advantage of the processor is the programmability, that is, the func-
tionality of the system can be defined and modified after the system is fabricated.
Then the systems including instruction set processors can be applied to wider
area of applications compared to the systems that does not include instruction
set processors. As a result, the production count of such systems will increase
and the cost of the systems will be reduced.

IPSJ Transactions on System LSI Design Methodology Vol. 3 161–178 (Aug. 2010) c© 2010 Information Processing Society of Japan

163 Advantage and Possibility of ASIP

1.5 Configuration of the Paper
In the rest of this paper, the advantage of ASIPs compared with general purpose

processor and dedicated hardware (ASIC) will be explained first. Then Architec-
ture Description Languages are surveyed. Next, processor description synthesis
methods and application program development tool set generation methods are
introduced. Then, ASIP Meister is explained as an ASIP development environ-
ment example. Next, an SoC that includes an ASIP for biomedical information
sensing system is introduced. Finally, the possibility of the ASIP as an important
component of Multi Processor SoC (MPSoC) is discussed.

2. Advantage of ASIP

Application systems can be implemented in various ways. Some of the typical
implementation methods are as follows:
(1) Pure Software Approach using GPP (General Purpose Proces-

sor),
(2) Dedicated Hardware Approach using ASIC (Application Specific

Integrated Circuit) along with GPP, and
(3) Dedicated Processor Approach using ASIP (Application-domain

Specific Instruction-set Processor).
These approaches have advantages and disadvantages as shown in Fig. 2.

2.1 Pure Software (GPP) Solution
In this approach, the functionality of the target system is implemented as a

software that is executed on a GPP.
The largest advantage of this approach would be the flexibility and extensibility

of the system’s function. The software can be modified much more easily than
hardware. Flexibility and extensibility are important to implement embedded
systems to reduce the development cost of the systems by re-using the same
hardware.

The drawback of this approach would be the power consumption and heat
dissipation. When the performance requirement to the system is very high, we
need to use a high performance processors, which consume a lot of electric energy
and generate a lot of heat dissipation.

In some of the embedded applications such as portable equipments, power

Fig. 2 Advantage of ASIPs.

consumption and heat dissipation are very critical. If the power consumption
is very large, we need to use a battery with a large capacity, which are usually
large sized, heavy, and expensive. And, if the heat dissipation is large, we need
to apply some cooling mechanism to remove the heat, which will make the final
product large, heavy, and expensive.

2.2 Dedicated Hardware (ASIC) Solution
In this approach, dedicated hardware modules (ASICs) are designed to imple-

ment the critical functionality.
The advantage of this approach, compared with the Pure Software Approach, is

the efficiency both in area and power consumption. Generally speaking, when the
same functionality can be implemented by some dedicated hardware (ASIC) and
by some software to be executed on GPP, higher performance and lower power
consumption can be expected by the former implementation than the latter.

The limitation of this approach is the lack of flexibility and extensibility of
the functionality of the system. Because ASICs are designed to execute some
specific functions, it is difficult to execute other functions on the same hardware.
A GPP is also used in this approach to control ASICs and to ease the limitation
by executing other operations than those executed by ASICs.

IPSJ Transactions on System LSI Design Methodology Vol. 3 161–178 (Aug. 2010) c© 2010 Information Processing Society of Japan

164 Advantage and Possibility of ASIP

2.3 Dedicated Processor (ASIP) Solution
In this approach, ASIP (Application-domain Specific Instruction-set Proces-

sor) is used to perform the required functionality. Typical ASIPs are based on
RISC (Reduced Instruction Set Computer) architecture and enhanced by adding
dedicated instructions and special purpose registers.

One of the advantages of this approach over the Pure Software Approach using
GPP is that ASIP can be more efficient than GPP in terms of area and power
consumption. That is, if the same technology is used to design and implement
(or fabricate) both processors, an ASIP that has the same functionality and
performance of a GPP can be implemented within a smaller chip area than the
GPP, and power consumption of the ASIP can be smaller than that of the GPP.

One of the advantages of this approach over the Dedicated Hardware Approach
using ASIC is the flexibility and extensibility. As mentioned in the beginning of
this subsection, if the ASIP is an extension of a RISC architecture by adding
dedicated instructions, the ASIP has the same flexibility and extensibility as
the Pure Software Approach using GPP. That means the ASIPs can be applied
to much wider application systems of the same domain than ASICs, which will
reduce the cost of ASIPs.

While this approach has various advantages over other two approaches, there
are following challenging issues to make this approach effective in the real world:
• How to describe architecture of the processor
• How to generate hardware description of the processor
• How to generate application program development tool set, such as compilers

and simulators, for the processor
• How to optimize the architecture of the processor for a given application

domain
We will discuss these issues in the following sections.

3. Architecture Description Language

Processor is one of the most sophisticated hardware components used in SoC
(System on a Chip). Then it requires a long term effort even for an experienced
designer to explore an excellent architecture and to describe the architecture in
an HDL (Hardware Description Language). Moreover it is a hard work to debug

Fig. 3 Role of ADLs.

and verify the design description manually. This is one of the reasons to generate
HDL description of processors from a higher abstraction level description.

The language used to describe processor architecture is called Architecture
Description Language (ADL) 6). The history of ADL is relatively old. ISPS
(Instruction Set Processor Specifications) 7),8) is one of the oldest ADL’s. The
purpose of ADL is to synthesize a hardware description (HDL) of target processor,
a compiler, cycle-accurate or untimed instruction set simulators, a test-bench and
other utilities such as debugger, profiler, and to verify the design of processors
in a formal method. In order to achieve these goals, ADL defines structures,
operations, instructions, data types, and interpretation rules (semantics) in the
processor. The role of ADLs in the processor synthesis and application program
development tool set generation is shown in Fig. 3.

The final object of ADL is the design space exploration of not only single proces-
sors but also systems which includes several processors in it. By using ADL, some
sophisticated design development tools mentioned above are generated and ADLs
enable design space exploration of processors. However, it is not easy to cover all
object required for design space exploration. In Objective-based classification,
ADLs are classified into four categories; compilation-oriented ADLs, simulation-
oriented ADLs, synthesis-oriented ADLs, and validation-oriented ADLs. On the
other hand, from the contents point of view, ADLs can be classified into three

IPSJ Transactions on System LSI Design Methodology Vol. 3 161–178 (Aug. 2010) c© 2010 Information Processing Society of Japan

165 Advantage and Possibility of ASIP

categories: Structural ADL, Behavioral ADL, and Mixed ADL. In the following
sections, advantages and limitations of these descriptions are introduced.

3.1 Structural ADL
Structural ADL is a synthesis-oriented and validation-oriented ADL accord-

ing to the objective-based classification. MIMOLA is one of structural ADLs.
MIMOLA 9)–11) has been developed since 1976 originally targeted for digital
recording system at Kiel University. MIMOLA defines designs using design enti-
ties called modules which include port and behavior. By using modules and its
connections, target system structure is specified. Owing to the structural based
description like HDL RT level description, MIMOLA is suitable for synthesiz-
able HW description synthesis and cycle-based simulator, but it is not easy to
extract instruction set information to generate a compiler for the processor from
its structural ADL.

3.2 Behavioral ADL
Behavioral ADL is a compilation-oriented and simulation-oriented ADLs.

ISDL 12) is one of behavioral ADLs. ISDL is specified by instruction word for-
mat, global definitions, storage resource, assembly syntax, and constraints and
optimization information to the compiler. Though storage resources are the
structural information, other information is behaviors for generating software
developing tools like assembler, simulator, and compiler.

Behavioral ADL, such as ISDL, is suitable to synthesize an instruction set level
simulator or a compiler because the necessary information on the instruction set
is directly described in the behavioral ADL. However, it is still a challenge to
synthesize a high quality HDL description from behavioral ADL description.

3.3 Mixed ADL
The early ADLs were either structure-oriented or behavioral-oriented, and they

are used for specific tasks in the previous sections. The later ADLs become Mixed
ADL which combines the benefits of structural ADL and behavioral ADL. Struc-
tural description makes it easy to generate a good quality HDL description for
HW synthesis, and behavioral description makes it easy to describe necessary in-
formation on the instruction set to generate a compiler and instruction set level
simulator. Mixed ADLs will cover the characteristics of ideal ADLs; compilation-
oriented, simulation-oriented, synthesis-oriented, and validation-oriented ADLs.

Many ADLs are included in this category, such as nML 13),14), LISA 15),16), EX-
PRESSION 6),17), GNR 40), and the ADL used in ASIP Meister 18),19).

4. Processor Description Synthesis

There are several approaches to synthesize processor hardware description, de-
pending on the architecture models of processor:
• Fixed Architecture Model Approach,
• Flexible Architecture Model Approach, and
• Free Architecture Model Approach.
There is a trade-off between the flexibility of the architecture model and the

complexity of synthesis algorithm. Generally speaking, if the architecture model
is more restricted, processor architecture description will become simpler, and
processor hardware description synthesis will become easier. However, of course,
if the processor architecture model is too restricted, we will lose the opportunity
to implement an efficient processor which is most suitable for the given applica-
tion.

4.1 Fixed Architecture Model Approach
This is the simplest approach to generate processor description. In this ap-

proach, a base processor is provided by the generation tool provider, that is,
the main part of the architecture framework of the processor, such as basic in-
struction set, instruction pipeline stage structure, general register file, is fixed a
priori. ASIP designers add their own instructions for specific application to the
base processor.

In this approach, both architecture description generation and application pro-
gram development tool set generation are easier than other two approaches. This
approach is employed by PEAS-I 20),41) for scalar processor generator, PEAS-II 21)

for VLIW processor generator, Xtensa 22), and ARC Cores. MIPS Technologies
also provide HDL description of their processor core as configurable processors.

4.2 Flexible Architecture Model Approach
In this approach, a flexible architecture model with reasonable assumptions is

utilized. The architecture model used in this approach has more freedom than
the one used in the Fixed Architecture Model Approach. For example, pipeline
stages is configurable, that is, the number of stages can be chosen, the micro

IPSJ Transactions on System LSI Design Methodology Vol. 3 161–178 (Aug. 2010) c© 2010 Information Processing Society of Japan

166 Advantage and Possibility of ASIP

operations performed in each pipeline stage can be specified, and special purpose
registers can be added, by the ASIP designers.

Processor description generation and application program development tool set
generation are easier than those in the Free Architecture Model Approach, due
to the assumptions on the architecture model.

The advantage of this approach over the Fixed Architecture Model Approach
is the flexibility of processor architecture. For example, the number of pipeline
stages can be decided by the architect, special purpose registers can be added,
and complex instructions can be implemented relatively easily. And design pro-
ductivity can be very high.

This approach is suitable for processor design from the scratch, as well as
for modification or extension of pre-designed architecture. It is relatively easy
to implement instruction set compatible processors of a legacy processor, but
it might be difficult to implement a clock cycle compatible “clone” of a legacy
processor, because the architecture model has some restriction.

This approach has another advantage. When the architecture options are pa-
rameterized, window based GUI can be utilized efficiently and design productivity
can be very high. This approach is employed by ASIP Meister (PEAS-III) 18),19).
The details of ASIP Meister are explained in Section 7.

4.3 Free Architecture Model Approach
In this approach, less assumptions are settled on the architecture model 23).

Therefore this approach provides the largest freedom or variety in the processor
architecture among three approaches discussed in Section 4. Legacy old fash-
ioned CISC processors could be designed using this approach. This is the best
advantage of this approach.

However, there are limitations of this approach. If we want to specify every
detail of the processor, the abstraction level of the description will become low
as register transfer level (RTL) and the design productivity would be the same
level as that of the design methodology using conventional HDLs.

On the contrary, if the abstraction level of the processor description is as high
as behavioral level, RT level HDL description should be synthesized. In this
case, the quality of generated HDL might not be good enough compared to other
approaches, because the behavioral synthesis technology is still challenging and

not matured yet as the conventional logic synthesis technology.

5. Application Program Development Tool Set Generation

In order to accomplish an ASIP development project, we need to prepare some
AP (Application Program) development tool set for application system devel-
opers. In the case of ASIP’s, AP development tools should be generated by
the ASIP development system, or someone should develop such AP development
tools manually 39),42).

Typical AP development tool set includes following tools:
• Compiler,
• Assembler and Linker,
• Instruction Set level Simulator (ISS),
• Profiler, and
• Debugger.
For large and complex application systems, compiler is essential in order to

enhance the design productivity and to shorten the development time. On the
contrary, if the application system’s functionality is not so complicated, com-
piler is optional because application programs could be developed in assembly
language.

Instruction set level simulator is essential to estimate the performance of the
system while the design space exploration is performed, and it is also necessary
to validate and improve the application program.

Debugger is necessary to validate or to find the cause of problems if any mal-
functions were observed. ICE (In Circuit Emulator) is sometimes used to observe
the internal status of a processor.

5.1 Role of Compiler in the ASIP Development
Among the AP development tools, compiler is the most complicated system,

and compiler generation is still a very challenging task even in the current in-
formation technology era. Generally speaking, requirements to compilers are the
efficiency of the object code (shorter length of code, smaller execution cycles,
or smaller power consumption) as well as the efficiency of compilation (shorter
compilation time). And there is a trade-off between these requirements.

There are two different roles expected to compilers for HW/SW Codesign of ap-

IPSJ Transactions on System LSI Design Methodology Vol. 3 161–178 (Aug. 2010) c© 2010 Information Processing Society of Japan

167 Advantage and Possibility of ASIP

Fig. 4 Role of compiler and profiler in HW/SW Codesign.

plication specific systems. The role of compiler and profiler in HW/SW Codesign
is illustrated in Fig. 4.

The first role is to assist system designers to explore the design space and to
look for an optimum architecture. In this case, shorter compilation time would be
more important than the efficiency of object code, if the compiler could provide
the designers with a fair estimation of the final code size, execution cycles, and
power consumption.

The second role is to generate efficient object code for the final product. In
this case, shorter compilation time is less important than the quality of object
code, provided the compilation time is not too long.

5.2 Approaches to Compiler Retargeting
There are several ways to obtain a compiler for an ASIP. One is to develop

or generate a new compiler for the ASIP. And another way is to retarget some
existing compiler for the ASIP, where some portion of the original compiler is
modified or extended for the ASIP. In this section, the term “retargeting” is used
as to include “generation”.

Compiler retargeting systems can be classified into three categories as fol-
lows 24). They employ different approaches and there is a tradeoff among these
approaches.

Automatically Retargeting: In this method, a “generic” compiler itself con-
tains a set of well defined parameters or switches that enables complete re-
targeting to new processors. A full range of knowledge about the target
processor architectures should be contained in the compiler a priori. Retar-
geting time is of the order of seconds to minutes. This approach might look
ideal, but it is quite challenging to develop a good compiler by this approach
that can generate efficient object code.

Compiler User Retargeting: In this method, compiler user is supposed to
provide a compiler generator that retargets a compiler from the specifica-
tion of processor architecture and instruction set. The compiler generator
produces the source code of the target compiler, which will be compiled by
a resident compiler. This approach is practical and employed by popular
compiler retargeting system, such as GCC 25) from Free Software Foundation
and CoSy 26) from ACE (Associated Computer Experts bv). These systems
can generate a good compiler that generates good object code. Retargeting
time is of the order hours to days. Because the generated compilers focus
on target machine independent code optimization, it would be necessary to
develop a code optimization path that performs target machine dependent
code optimization.

Compiler Developer Retargeting: This is a conventional approach. Com-
piler developer retargets the compiler manually. Therefore, retargeting time
is of the order of weeks to months. The quality of compiler developed by
this approach will be better than those by other two approaches. But a large
amount of labor is necessary to develop a compiler manually, which will take
long time and the development cost is very expensive.

6. Processor Architecture Optimization

One of the most exciting challenges on ASIP design is to decide an appropriate
instruction-set which optimizes certain objective, e.g., performance, area, power
consumption, and their tradeoff. Many instruction-set optimization methods are
proposed so far 27)–32). In general, the first step of processor optimization is appli-
cation program analysis step, and the second step is instruction-set optimization
step.

IPSJ Transactions on System LSI Design Methodology Vol. 3 161–178 (Aug. 2010) c© 2010 Information Processing Society of Japan

168 Advantage and Possibility of ASIP

6.1 Application Program Analysis
In the application program analysis step, designer grasps relations and frequen-

cies of operations and data. The application program analysis step is generally
formalized as follows.

Application program analysis
Input:

• Application program
• Related data
• Basic instruction

Output:
• Data type
• Basic block structure
• Relations between instructions and data
• Frequency of instructions and basic blocks

Application program analysis methods are classified into static analysis meth-
ods and dynamic analysis methods.

Generally, static analysis methods compile application programs by basic in-
structions, construct basic block structure and data flow graphs (DFG), and
extract frequency of basic blocks, instructions, or instruction patterns. To grasp
more accurate frequency of operations, dynamic profiling is used. Dynamic anal-
ysis methods execute application programs with related data on simulator and
profile frequency of them.

6.2 Instruction Set Optimization
Bottlenecks and frequently executing operation patterns are candidates of hard-

ware implementations which are used as custom instructions because it is ex-
pected that custom instructions reduce execution time and power consumption.
However, additional hardware requires more area. Therefore, deciding imple-
mentation can be formalized as an optimization problem when there are several
candidates of implementations. Generic definition of Instruction-set Optimiza-
tion problem is as follows.

Instruction-set optimization problem
Input:

• Analyzed results from Application program analysis step

• Hardware and software database
• Constraints

Output:
• Instruction-set
• Implementations (hardware and software modules)

Objective:
• Execution cycle, area, or power consumption or combinations of

them
Generally, since execution cycle, area, and power consumption are under trade-

off relation, instruction-set optimization step aims to optimizing one of them or
to balancing them.

As one of examples, we introduce an instruction-set optimization method 28)

developed for PEAS-I. Let xi ∈ Mi be implementation of basic operation i where
Mi denotes set of implementations of basic operation i. The method finds im-
plementation vector

X = (x0, x1, · · · , xn)
which minimizes the objective function

T (X) =
N∑

j=1

{Fj × (t(Bj ,X) + cj)} − b

subject to the constraints∑

xi∈S

a(xi) ≤ Amax,

and ∑

xi∈S

p(xi) ≤ Pmax.

N denotes the total number of basic blocks, Fj denotes the execution frequency
of basic block Bj , t(Bj ,X) denotes execution cycles needed to execute Bj using
configuration X, and a(xi), p(xi) denote area and power consumption of xi, re-
spectively. cj denotes clock cycles due to delayed branch in Bj and b denotes
clock cycles due to un-taken branches in the whole program. Note that these
values, except t(Bj ,X), are derived from application program analysis step by
simulating application program and related data. The number of possible im-

IPSJ Transactions on System LSI Design Methodology Vol. 3 161–178 (Aug. 2010) c© 2010 Information Processing Society of Japan

169 Advantage and Possibility of ASIP

plementation vector X is too huge. Therefore, the method reduces search space
based on dependencies between operations and basic blocks derived from appli-
cation program analysis step and optimizes implementation vector X.

7. ASIP Development Environment Example

In this section, an ASIP development environment named ASIP Meister is
introduced.

7.1 Feature of ASIP Meister
ASIP Meister 18),19) is an ASIP design environment developed by a research

group from Osaka University, Shizuoka University, Kwansei Gakuin University,
Tsuruoka National Collage of Technology, and Osaka Electro-Communication
University. The project had started in 1996 as one of the first collaboration
research projects sponsored by STARC (Semiconductor Technology Academic
Research Center), which is a consortium of ten semiconductor industries in Japan.
ASIP Meister is now a commercial EDA tool distributed by ASIP Solutions, Inc.,
which is one of the startup companies from Osaka University 33).

One of the distinguished features of ASIP Meister are a window based GUI
(Graphical User Interface), that can be used quite effectively for design specifi-
cation of both structural and behavioral descriptions of processors.

The input through GUI is stored in a file as XML description, then ASIP
Meister generates HDL description, in VHDL, Verilog HDL, and SystemC. ASIP
Meister also generates GNU based application program development tool set.

7.2 The Efficiency of Window Based GUI
Window based GUI has several advantages based on a human engineering.

First of all, if we use window based GUI properly, design time can be reduced
drastically by taking advantage of visual checking of description. Secondly, hu-
man readable documentation can be generated easily in the form of table or tree,
for example.

In the structural description of a processor, components can be specified by
a relatively small number of parameters. For example, general register file can
be specified by the bit width of each word, number of words in the register file,
number of read ports, and number of write ports. In such a case, component
specification can be described very easily by using a GUI. Some snap shots of

Fig. 5 Processor architecture parameter entry window.

Fig. 6 Register file instantiation using GUI.

design windows in ASIP Meister are shown in Figs. 5, 6, 7 and 8.
Behavioral description can also be described very nicely using GUI. Figure 8

shows an example of instruction behavior description using the GUI of ASIP

IPSJ Transactions on System LSI Design Methodology Vol. 3 161–178 (Aug. 2010) c© 2010 Information Processing Society of Japan

170 Advantage and Possibility of ASIP

Fig. 7 Instruction format definition and operation code assignment window.

Fig. 8 Behavioral description example of the ADD instruction using GUI.

Fig. 9 Processor architecture model example with 5 stage instruction pipeline.

Meister.
Figure 9 shows an example of a structure model of a RISC processor with 5

stage pipeline, generated by ASIP Meister.
7.3 HDL Description Generation
In ASIP Meister, two types of HDLs are generated. One is for synthesis and

the other is for simulation. Processor consists of a lot of hardware resources such
as ALU, shifter, multiplier, register files, pipeline registers, datapath selectors
and so on in the datapath and a controller in the control path.

In ASIP Meister, input description for hardware generation is written in micro-
operation description, which is the specific language used in ASIP Meister to de-
scribe the instruction behavior in each pipeline stage of each instruction. On
micro-operation description, processing behaviors are written in like result=
COMPONENT.FUNCTION(port0, port1, · · ·); notations, where COMPONENT

IPSJ Transactions on System LSI Design Methodology Vol. 3 161–178 (Aug. 2010) c© 2010 Information Processing Society of Japan

171 Advantage and Possibility of ASIP

Fig. 10 Instruction examples of micro-operation description.

is the resource name used in instruction, FUNCTION is one of functions of used
component, and portX indicates the connected signal to specified component.
Micro-operation description offers some macro definition for repetitive usage of
descriptions. In processors, instruction fetch which moves instruction from mem-
ory to instruction register is a common behavior between instructions and macro
Fetch() are used as an example of macro in Fig. 8.

In the first HDL generation phase, micro-operation description is analyzed, and
Data Flow Graph (DFG) is generated for each instruction. Second, the gener-
ated DFGs are merged into one DFG for generating processor datapath. Here,
some input ports in the merged DFGs have a signal conflict where more than two
edges are connected to one input port. HDL generation system in ASIP Meister
inserts multiplexers as datapath selectors in order to resolve the signal conflicts.
Third, pipeline registers are inserted at pipeline stage boundaries. Controllers
are generated by analyzing control signal of used components in each instruction,
datapath selector control, and pipeline register control which stalls the pipeline
processing for structural hazards of resources. Finally, HDL description is gen-
erated from the DFG. Figure 10 shows a micro-operation description of two
instructions, subtraction (SUB) and shift left logical with immediate (SLLI) in-

structions. Since Fig. 10 shows the main part of the instruction, instruction fetch
and operation decode part are omitted for simplification. GPR is a general pur-
pose register, ALU is an arithmetic logic unit, and SFT is a shifter. “read”
and “write” are functions of GPR which indicates reading from and writing to
the GPR, and “sub” and “add” are a function of ALU and SFT, respectively.
Figure 11 (a) shows an example of merging operation of two DFGs. By ana-
lyzing the same name GPR in two instructions, generator identifies GPR in two
instructions the same component. Figure 11 (b) shows an example of inserting a
datapath selector. At resource GPR, both the output of ALU and the output of
SFT are input of GPR. Therefore, a datapath selector should be inserted in order
to resolve the signal conflict of both outputs. Figure 11 (c) shows the generated
structure after HW generation, where data is transferred over the pipeline stage,
pipeline register is inserted, and controller is generated.

Originally, though ASIP Meister supports simple single scalar pipeline proces-
sor, it recently extends to support VLIW type processor and low power type
RISC processor. Furthermore, most recent generator supports not only synthe-
sizable and simulatable HDLs in VHDL or Verilog HDL but also descriptions in
SystemC for simulations.

7.4 Application Program Development Tool Set Generation
Although there have been a lot of researches focusing on compiler generation

for the “flexible architecture model” (as classified in Section 4) 34), it is still a
challenge to automatically deliver industrial quality compilers with optimization
capabilities. For this reason, the current version of ASIP Meister mainly supports
tool set generation for the “fixed architecture model”. Namely, while custom
processors are designed by adding new instructions to a base processor, tool sets
for the custom processors are auto-generated by extending an existing tool set
for the base processor with an ability to handle the new instructions.

As an infrastructure of the tool set generation, GNU tools are employed, which
include GCC (a compiler) 25), Binutils (binary utilities which includes an assem-
bler, a disassembler, a linker, etc.) 35), and GDB (a debugger and a instruction
set simulator) 36). Namely we assume GCC, Binutils, and GDB are available for
the base processor, from which the same tools for the extended processors are
generated. Popularity of the GNU tools among embedded software developers

IPSJ Transactions on System LSI Design Methodology Vol. 3 161–178 (Aug. 2010) c© 2010 Information Processing Society of Japan

172 Advantage and Possibility of ASIP

(a) Merging DFGs of instructions

(b) Inserting datapath selector

(c) Generated structure model

Fig. 11 Structure model generation.

is of practical importance. Generated tools will provide a good affinity with the
other existing tools. Open source license is sometimes vitally important, for the
tools for both the base processor and the generated processors may need to be
customized to their own purposes.

int a, b, m;

int y = builtin brownie32 SADD(a,b);

builtin brownie32 MAC(m, a, b);

Fig. 12 Use of custom instructions via intrinsics.

Fig. 13 Plug-in approach for augumenting tool chain for base processors.

The extended GCC provides a way of utilizing newly added instructions in
terms of intrinsics, or built-in C functions. Each custom instruction is gener-
ated in the object file by calling a corresponding intrinsics. Figure 12 shows an
example, where the second line specifies the use of an SADD instruction (with
two register reads and one register write) and the third line the use of an MAD
instruction (whose first operand is read and written). The tool generator aug-
ments the base GCC with the intrinsics for the custom instructions based on the
information given in the GUI.

Note that the extended GCC handles register allocation and code optimization
for the custom instructions. Especially, code scheduling is conducted considering
the pipeline hazards and pipeline forwarding under the optimization option (-O2).

The tools other than GCC are extended by a “plug-in” approach 37). Figure 13
illustrates the concept of the plug-in. Each tool for the base processors is modified
to have a “plug” while the corresponding tasks to handle the custom instructions
are packaged as a “plug-in” to fit into the plug. Figure 14 shows the internal
flow to implement the plug-in. For each instruction, it is tested if the instruction
is a base instruction or not. If it is a new instruction the plug-in is called;
otherwise the ordinary task is followed. This is a flexible scheme which allows
customization of the base tools in a safe way.

IPSJ Transactions on System LSI Design Methodology Vol. 3 161–178 (Aug. 2010) c© 2010 Information Processing Society of Japan

173 Advantage and Possibility of ASIP

Fig. 14 Internal flow for plug-in implementation.

The machine description for extended GCC as well as plug-ins for all the other
tools are generated from the specification of ISA extension, which is captured
from the GUI and stored in a single XML file.

8. Case Study: An ASIP Design Example

In this section, MeDIX-I (Medical-Domain specific Instruction eXtention, type
I) processor 38) is introduced as one of the successful ASIPs for bio-medical infor-
mation sensing system. MeDIX-I is being developed in the collaborative research
project titled “Development of Healthcare Devices and Systems for Ubiquitous
Bioinstrumentation”, sponsored by the City Area Program of the Ministry of
Education, Culture, Sports, Science and Technology (MEXT) of Japan. This
project is being performed by Nara Medical University, Osaka University, Tokyo
Institute of Technology, Kwansei Gakuin University, and Kinki University.

8.1 Background
The basic requirements to the biomedical information sensing systems for the

future medical and health care are as follows. There are needs to measure in-
ner body pressure, electric potential (voltage), acoustic pressure, etc. While this
information has been measured in the hospitals, it is desirable for both medical
doctor and patients to measure these information under the ordinary living envi-
ronment, especially for the examination of chronic malady. In this case, following
requirements are important: less awareness of the sensing system, less restraint
measurement, less invasive measurement, long time continuous measurement, and

Fig. 15 Cross section of the inner body pressure sensing node.

real-time reporting to hospital.
In order to satisfy these requirements, small size, light weight and less energy

consuming devices with wireless communication functions should be used.
Proposed solution to these requirements is the medical domain specific SoC

device that integrates interfaces to various sensors, analog to digital convertors
(ADC) 43), micro processor unit (MPU), memory (RAM and ROM), RF (radio
frequency) communication circuit, as well as clock generator and power manage-
ment unit. The SoC device is named MeSOC-I (Medical domain specific System
On Chip, type I). MeDIX-I is the MPU used in the MeSOC-I.

The cross section of the prototype of inner body pressure sensor node is shown
in Fig. 15. The major components of the sensing node are a MEMS pressure
sensor, MeSOC-I chip in a chip size package, coin battery, antenna coil, and
capacitors on a flexible printed circuit board (PCB).

8.2 Functional Requirements to MeSOC-I
The outline of the functional requirements to MeSOC-I is to measure and send

the inner body pressure value to the transmitter module that locates on the

IPSJ Transactions on System LSI Design Methodology Vol. 3 161–178 (Aug. 2010) c© 2010 Information Processing Society of Japan

174 Advantage and Possibility of ASIP

Table 1 Features of Brownie Micro 16 processor.

Feature Value

No. of Pipeline Stages 3

Instruction Bus Width 16 bit

Data Bus Width 16 bit

Register File 16 × 16 bit

No. of Instructions 33

Gate Count 12 K(*)

Max. Clock Frequency 135 MHz(*)

Power Consumption 83 uW / MHz (*)

(*) Logic synthesis condition: TSMC 0.18 µm CMOS Analog Mixed Signal Cell Library,
Typical Delay, VDD=1.8 V

surface of the body every 1/30 seconds. The value sent from the sensor node
is an average of continuous 32 times measurements of the inner body pressure
to reduce the measurement error due to various noises. The measurement is
supposed to continue for 72 hours (three days) after the sensing node is implanted
in the body.

It is system, electromagnetic induction coupling is used for the communication
between inner body capsule and outer body data transmitter. Because the data
transmission using electromagnetic induction coupling could be unstable, data
transmission error can happen. In order to detect such error and recover whenever
possible, ECC (Error Correcting Code) based on the Multi Dimensional Parity
Code (MDPC) is used in the physical layer of transmission.

8.3 Extended Instructions in MeDIX-I
The base processor of MeDIX-I is the Brownie Micro 16 (BM16) processor from

ASIP Solutions, Inc., which is a 16 bit small RISC processor as shown in Table 1.
The block diagram of MeDIX-I is shown in Fig. 16. The photomicrograph of
MeSOC-I is shown in Fig. 17.

Extended instructions that have been added to BM16 processor are as follows:
ECC supplementary instructions: ECC supplementary instructions in-

clude those to calculate check code and syndrome, and perform error cor-
rection. One of the advantages of MDPC is its extensibility, that is, data
length to be coded/decoded can be easily extended and can be processed
using the same instruction set for different length of data.

Fig. 16 Block diagram of MeDIX-I.

Fig. 17 Photomicrograph of MeSOC-I.

ADC control instructions: ADC (Analog to Digital Converter) control in-
structions generate control signals and read the converted results from ADC.

Sleep instruction: Sleep instruction has been added to save energy by freez-

IPSJ Transactions on System LSI Design Methodology Vol. 3 161–178 (Aug. 2010) c© 2010 Information Processing Society of Japan

175 Advantage and Possibility of ASIP

Table 2 Comparison of area, performance, power and energy consumption.

BM16 Only BM16+ASIC MeDIX-I

Area [mm2] 101,508 (100%) 169,536 (+67%) 107,476 (+5.9%)

Exec. Cycles 291 (100%) 49 (−83%) 33 (−89%)

Power [µW/MHz] 34.8 (100%) 57.7 (+66%) 42.3 (+22%)

Energy [nJ] 10.13 (100%) 2.83 (−72%) 1.39 (−86%)

(*) Cell Library: 0.18 µm CMOS analog mixed digital;
Clock Freq.: 1 MHz; Data Bit Length: 64

ing clock signal when all tasks became idle. The processor awakes when
external interrupt has occurred.

8.4 Effectiveness of ECC Supplementary Instructions
In order to confirm the effectiveness of MeDIX-I in energy consumption for

ECC related process, two different designs have been made. One is based on
Pure Software (GPP) Solution, where the base processor BM16 has been used
as it is, and all ECC related function has been implemented by software using
RISC instructions of BM16. While BM16 is not a so-called GPP, but most of
the GPP’s do not have effective instructions for ECC related functions.

Another one is based on Dedicated Hardware (ASIC) Solution, where all ECC
related functions have been implemented by hardware and connected to BM16
processor as a peripheral module. In this implementation, following protocol is
necessary to perform the ECC related functions: (1) check if the status of ECC
module is ready, (2) send data and command to ECC module, and (3) receive
the results and error status.

For each implementation, chip area was estimated from the logic synthesis
result using Design Compiler from Synopsys, then the execution cycles was mea-
sured using a ModelSim logic simulator from Mentor Graphics, and finally power
consumption and energy consumption were estimated using Power Compiler from
Synopsys. The results are shown in Table 2. The energy consumption for dif-
ferent data length is compared in Fig. 18.

Comparing the experimental results of ASIP Solution with those of Pure Soft-
ware Solution, the chip area of MeDIX-I is about 6% larger and power con-
sumption is about 22% larger than BM16, but energy consumption is drastically
reduced to 14% of BM16 because the execution cycles was reduced to 11% of

Fig. 18 Comparison of energy consumption.

BM16.
We can also find that the energy consumption of MeDIX-I is about 50% smaller

than that of the Dedicated Hardware (ASIC) Solution. This result is due to the
redundant hardware component in ECC module and execution cycle overhead to
perform the protocol to control ECC module. In the case of MeDIX-I, processor’s
resources can be used to perform ECC functions, and the data item can be sent
and received using general purpose registers without any I/O overhead.

9. Conclusion and Future Direction

In this paper, the advantage of ASIPs over the conventional methodologies to
implement embedded systems, such as GPP centric Software Solution and/or
ASIC as a peripheral is explained. Then, various technical issues to generate
HDL description of ASIP and to generate application program development tool
set, such as compiler and simulator, and architecture optimization methods were
introduced. Next, ASIP Meister, an ASIP development environment, was in-

IPSJ Transactions on System LSI Design Methodology Vol. 3 161–178 (Aug. 2010) c© 2010 Information Processing Society of Japan

176 Advantage and Possibility of ASIP

troduced. Then, one of successful real-world design examples is for biomedical
information sensing system is introduced. In this system, almost all functions
are concentrated in one SoC called Medical domain specific System On Chip,
Type I (MeSOC-I). It consists of micro processor unit (MPU), analog to digital
converters (ADC), memories (RAM and ROM), radio frequency communication
(RF) circuits as well as clock generator and power management unit. This MPU
controls all components on this SoC and it is an ASIP generated by ASIP Meister.

In system level design era, since processor is indispensable component in SoC,
SoC should be expected to have at least one processor component on it. There-
fore, the importance of processor design will be more and more increasing.
Furthermore, recently multi-processor SoC (MPSoC) have become popular and
more-than Moore era is approaching. Efficient processor design, especially ASIP,
is still important research area in future.

Acknowledgments The authors would like to express their appreciation to
the following researchers and engineers: Prof. Jun Sato from Tsuruoka National
College of Technology, Prof. Akichika Shiomi from Shizuoka University, Prof.
Akira Kitajima from Osaka Electro-Communication University, and many ex-
students, especially Dr. Makiko Itoh (currently with Fujitsu Laboratories, Ltd.)
Dr. Yuki Kobayashi (currently with Renesas Electronics Corp.), for their effort
to develop ASIP Meister. The author would like to thank Mr. Nobuyuki Hikichi
from SRA, for his kind assistance and advice to the development of GNU tool
set for ASIP Meister. The authors would like to express their sincere thanks to
STARC for their financial support and technical advice as industrial engineers.

References

1) International Technology Roadmap for Semiconductors, 2009 Edition.
http://www.itrs.net/

2) Moore, G.E.: Cramming more components onto integrated circuits, Electronics,
Vol.38, No.8 (Apr. 19, 1965).

3) http://www.sematech.org/
4) Gajski, D.D., Zhu, J., Domer, R., Aerstlauer, A. and Zhao, S.: SpecC: Specification

Language and Methodology, Kluwer Academic Publishers (2000).
5) http://www.systemc.org/home/
6) Mishra, P. and Dutt, N. (Eds.): Processor Description Languages, Elsevier (2008).
7) Barbacci, M.R., Barnes, G., Cattell, R.G. and Siewiorek, D.P.: The ISPS Computer

Description Language, Department of Computer Science, Carnegie-Melon Univer-
sity (1977).

8) Barbacci, M.R.: Instruction Set Processor Specifications (ISPS): The notations
and its applications, IEEE Trans. Comput., Vol.C–30, No.1, pp.24–40 (Jan. 1981).

9) Marwedel, P.: The MIMOLA Design System: Detailed Description of the Software
System, Proc. 16th Design Automation Conference, pp.59–63 (1979).

10) Marwedel, P.: MIMOLA—A Fully Synthesizable Language, Processor Description
Languages, Mishra, P. and Dutt, N. (Eds.), pp.35–64, Elsevier (2008).

11) Zimmermann, G.: The MIMOLA Design System: A Computer Aided Digital Pro-
cessor Design Method, Proc. 16th Design Automation Conference, pp.53–58 (1979).

12) Hadjiyiannis, G., Hanono, S. and Devadas, S.: ISDL: An Instruction Set Descrip-
tion Language, Proc. Design Automation Conference (DAC), pp.299–302 (1997).

13) Freerics, M.: The nML machine description formalism, Technical Report 1991/15,
Computer Science Department, T.U. Berlin, Berlin, Germany (1991).

14) Van Praet, J., Lanneer, D., Geurts, W. and Goossens, G.: nML: A Structural
Modeling Language for Retargetable Compilation and ASIP Design, Processor De-
scription Languages, Mishra, P. and Dutt, N. (Eds.), pp.65–94, Elsevier (2008).

15) Chattpadhyay, A., Myer, H. and Leupers, R.: LISA: A Uniform ADL for Embedded
Processor Modeling, Implementation, and Software Toolsuite Generation, Processor
Description Languages, Mishra, P. and Dutt, N. (Eds.), pp.95–132, Elsevier (2008).

16) Hoffmann, A., Meyr, H. and Leupers, R.: Architecture Exploration for Embedded
Processors with LISA, Kluwer Academic Publishers (2002).

17) Halambi, A., Grun, P., Ganesh, V., Khare, A., Dutt, N. and Nicolau, A.: EX-
PRESSION: A Language for Architecture Expression through Compiler/Simulator
Retargetability, Proc. Design and Test in Europe (DATE), pp.485–490 (1999).

18) Itoh, M., Higaki, S., Sato, J., Shiomi, A., Takeuchi, Y., Kitajima, A. and Imai,
M.: PEAS-III: An ASIP Design Environment, Proc. International Conference on
Computer Design: VLSI in Computers and Processors (ICCD), pp.430–436 (Sep.
2000).

19) Kobayashi, Y., Takeuchi, Y. and Imai, M.: ASIP Meister, Processor Description
Languages, Mishra, P. and Dutt, N. (Eds.), pp.163–182, Elsevier (2008).

20) Sato, J., Hikichi, N., Shiomi, A. and Imai, M.: Effectiveness of a HW/SW Code-
sign System PEAS–I in the CPU Core Design, Proc. Asia Pacific Conference on
Hardware Description Languages (APCHDL), pp.259–262 (1994).

21) Imai, M., Takeuchi, Y., Ohtsuki, N. and Hikichi, N.: Compiler Generation Tech-
niques for Embedded Processors and their Application to HW/SW Codesign,
System-Level Synthesis, Jerraya, A.A. and Mermet, J. (Eds.), pp.293–320, Kluwer
Academic Publishers (1999).

22) Sanghavi, H.A. and Andrews, N.B.: TIE: An ADL for Designing Application-
specific Instruction Set Extension, Processor Description Languages, Mishra, P.
and Dutt, N. (Eds.), pp.183–216, Elsevier (2008).

IPSJ Transactions on System LSI Design Methodology Vol. 3 161–178 (Aug. 2010) c© 2010 Information Processing Society of Japan

177 Advantage and Possibility of ASIP

23) Schliebusch, O., Meyr, H. and Leupers, R.: Optimized Synthesis from Architecture
Description Language Models, Springer (2007).

24) Liem, C.: Retargetable Compilers for Embedded Cores, Kluwer Academic Publish-
ers (1997).

25) http://gcc.gnu.org/
26) http://www.ace.nl/compiler/cosy.html
27) Atasu, K., Pozzi, L. and Lenne, P.: Automatic application-specific instruction-set

extensions under microarchitectural constraints, International Journal of Parallel
Programming, Vol.31, No.6, pp.411–428 (Dec. 2003).

28) Binh, N.N., Imai, M., Shiomi, A. and Hikichi, N.: A Hardware/Software Parti-
tioning Algorithm for Pipelined Instruction Set Processor, Proc. European Design
Automation Conference (EURO-DAC), pp.176–181 (1995).

29) Cheung, N., Henkel, J. and Parameswaran, S.: Rapid Configuration & Instruction
Selection for an ASIP: A Case Study, Proc. in Design, Automation and Test in
Europe Conference and Exhibition (DATE ’03), pp.802–809 (2003).

30) Cong, J., Fan, Y., Han, G. and Zhang, Z.: Applicatoin-Specific Instruction Gen-
eration for Configurable Processor Architectures, Proc. in 2004 International Sym-
posium on Field Programmable Gate Arrays (FPGA’04), pp.183–189 (Feb. 2004).

31) Peymandoust, A., Pozzi, L., Ienne, P. and De Micheli, G.: Automatic Instruction-
Set Extension and Utilization for Embedded Processors, Proc. 14th International
Conference on Application-specific Systems, Architectures and Processors, The
Hague, The Netherlands, pp.108–118 (June 2003).

32) Pozzi, L., Atasu, K. and Ienne, P.: Exact and Approximate Algorithms for the
Extension of Embedded Processor Instruction Sets, IEEE Trans. Comput.–Aided
Design of Integrated Circuits and Systems, Vol.25, No.7, pp.1209–1229 (2006).

33) http://www.asip-solutions.com/
34) Leupers, R. and Marwedel, P.: Regargetable Compiler Technology for Embedded

Systems—Tools and Applications, Kluwer Academic Publishers (2001).
35) http://www.gnu.org/software/binutils/
36) http://www.gnu.org/software/gdb/
37) Kumura, T., Taga, S., Ishiura, N., Takeuchi, Y. and Imai, M.: Software Develop-

ment Tool Generation Method Suitable for Instruction Set Extension of Embedded
Processors, IPSJ Trans. System LSI Design Methodology, Vol.3 (Aug. 2010), to
appear.

38) Iwato, H., Sakanushi, K., Takeuchi, Y., Imai, M., Matsuzawa, A. and Hirao, Y.:
A Low Power SoC for Pressure Measurement Capsules in Ambulatory Urodynamic
Monitoring, Proc. Cool Chips XIII, pp.441–456 (Apr. 2010).

39) Araujo, G., Rigo, S. and Azevedo, R.: Processor Design with ArchC, in Ref. 6),
pp.275–294 (2008).

40) Gorjiara, B., Reshadi, M. and Gajski, D.: GNR: A Formal Language for Specifica-
tion, Compilation, and Synthesis of Custom and Embedded Processors, Processor

Description Languages, Mishra, P. and Dutt, N. (Eds.), pp.329–368, Elsevier (2008).
41) Imai, M.: Synthesis of Application Specific CPU Core, Proc. Synthesis and Simu-

lation Meeting and International Exchange (SASIMI), V–I (1989).
42) Onder, S.: ADL++: Object-Oriented Specification of Complicated Instruction Sets

and Microarchitectures, Processor Description Languages, Mishra, P. and Dutt, N.
(Eds.), pp.247–274, Elsevier (2008).

43) Vo, T.M., Kuramochi, Y., Miyahara, M., Kurashina, T. and Matsuzawa, A.: A 10-
bit, 290fJ/conv. steps, 0.13mm2 , zero-static power, self-timed capacitance to digital
converter, Proc. International Conference on Solid State Devices and Materials
2009 (Oct. 2009).

(Received June 1, 2010)
(Released August 16, 2010)

(Invited by Editor-in-Chief: Hedetoshi Onodera)

Masaharu Imai received his B.S. degree in Electrical Engi-
neering from Nagoya University, Nagoya, Japan in 1974, then M.S.
and Ph.D. degrees in Information Science from Nagoya University
in 1976 and 1979, respectively. From April 1979 through March
1996, he has been with the Department of Information and Com-
puter Sciences, Toyohashi University of Technology, Toyohashi,
Japan, where his final title was a Professor. He has been a Vis-

iting Professor in the University of South Carolina, Columbia, SC, U.S.A. from
1984 to 1985. From April 1996 to present, he is with Osaka University, Osaka,
Japan, where he is a Professor of the Department of Information Systems Engi-
neering, Graduate School of Information Science and Technology. His research
interest includes ASIP (Application domain Specific Instruction set Processor)
design automation, hardware/software codesign, VLSI architecture, and system
level design methodology of embedded systems. Since 1991, he has been working
for EDA standardization including VHDL under IEEE and JEITA (Japan Elec-
tronics and Information Technology Industries Association). He is a member of
IEEE, ACM, IEICE of Japan, and IPSJ.

IPSJ Transactions on System LSI Design Methodology Vol. 3 161–178 (Aug. 2010) c© 2010 Information Processing Society of Japan

178 Advantage and Possibility of ASIP

Yoshinori Takeuchi received his B.E., M.E. and Dr. Eng. de-
grees from Tokyo Institute of Technology in 1987, 1989 and 1992,
respectively. From 1992 through 1996, he was a research asso-
ciate of Department of Engineering, Tokyo University of Agricul-
ture and Technology. From 1996, he has been with the Osaka
University. He was a visiting scholar in University of California,
Irvine from 2006 to 2007. He is currently an Associate Professor

of Graduate School of Information Science and Technology at Osaka University.
His research interests include System Level Design, VLSI design and VLSI CAD.
He is a member of IEICE of Japan, IPSJ, ACM, and SP, CAS and SSC Society
of IEEE.

Keishi Sakanushi received his B.E., M.E., and D.E. degrees in
electrical and electronics engineering from Tokyo Institute of Tech-
nology, Tokyo, Japan, in 1997, 1999, and 2002, respectively. He
has been an Assistant Professor in the Graduate School of Infor-
mation Science and Technology, Osaka University, Osaka, Japan,
since April 2002 when the graduate school was founded. His re-
search is in VLSI layout design methodology and optimization,

embedded system design methodology and optimization. He is a member of
IEEE, IPSJ and IEICE.

Nagisa Ishiura received his B.E., M.E., and Ph.D. degrees
in Information Science from Kyoto University, Kyoto, Japan, in
1984, 1986, and 1991, respectively. In 1987, he joined the De-
partment of Information Science, Kyoto University, where he was
an Instructor until April 1991. He joined the Department of In-
formation Systems Engineering, Osaka University, Osaka, Japan,
as Lecturer where he was promoted to an Associate Professor in

December 1994. Since 2002, he has been a Professor at School of Science and
Technology, Kwansei Gakuin University, Hyogo, Japan. His current research in-
terests include compilers for embeded processors, hardware/software codesign,
and high-level synthesis. He is a member of IEEE, ACM, and IEICE.

IPSJ Transactions on System LSI Design Methodology Vol. 3 161–178 (Aug. 2010) c© 2010 Information Processing Society of Japan

