
Introducing Real Constraints in Partitioned ILP-Based Binding
in High-Level Synthesis

Nagisa Ishiura and Yuuki Oosako

School of Science and Technology, Kwansei Gakuin University, Sanda, Hyogo, Japan

Abstract— This paper presents an efficient ILP
based method of binding in high-level synthesis. The
binding problem can be broken into subproblems
based on partitioning of the set of control steps. To
incorporate a global view in solving each subproblem
by ILP, constraints for other unsolved subproblems
without integer restrictions are added. Experiments
on some designs shows that this produces better solu-
tions within less computation time.

I. Introduction

High-level synthesis [1] now plays an indispensable role
in VLSI design. Among the primary tasks in high-level
synthesis, binding, which assigns operations and values in
a CDFG (control dataflow graph) to functional units and
registers in a datapath, is the most CPU intensive and
has the largest impact on the quality of the synthesized
circuits in terms of the size and the critical path delay.

While graph or flow based polynomial time algorithms
[2, 3] are typically employed to find reasonable binding
solutions within practical time, ILP (integer linear pro-
gramming) is also used to get high-quality solutions for
small to medium designs [4, 5]. Although ILP formula-
tion is also convenient in incorporating various new factors
into binding, computation time for large models often gets
prohibitive. To curve the CPU time, the models may be
partitioned into smaller models and solved piece by piece,
but this drops the quality of solutions, for optimization is
attempted based only on local information.

To address this issue, this paper proposes to incorporate
constraints of other subproblems without integer restric-
tion into those of a subproblem in focus. Experiments on
some designs yielded better solutions within less compu-
tation time than the simple partitioning method.

II. ILP formulation of Binding

Given a scheduled CDFG, we try to find an assignment
of operations and values to functional units and registers
which minimizes the total cost of functional units and
multiplexers. As formulated in [6], we force all the paths
including false paths (produced by chaining) not to exceed
the clock period. In case we encounter a contradiction, we
resolve it by allocating extra functional units (as in [5])
instead of altering the scheduling (as in [6]).

Let F and R be the sets of the available functional
units and the registers in the datapath, respectively. Let
U = F ∪ R. We call u ∈ U a unit. Let Wu and Tu be
the sets of the output terminals and the input terminals
of unit u. Let W and T be the sets of all the output
terminals and all the input terminals, respectively. For
t ∈ W ∪ T , let ut denote the unit that t belongs to. Let

du ∈ Z+ and cu ∈ Z+ be the delay and the cost of unit
u, respectively. Let pmax be the maximum permissible
critical path delay of the datapath. Let the cost of the
k-input multiplexer be (k−1) · cmux. Let O and V be the
sets of the operations and the values of a given scheduled
DFG, respectively, and let N = O ∪ V . We call n ∈ N a
node. Let Pn and Qn be the sets of the output ports and
the input ports of node n. Let P and Q be the sets of
all the output ports and all the input ports, respectively.
For p ∈ P ∪Q, let np denote the node that p belongs to.
E ⊆ P ×Q represents the data dependency of the DFG.
Let S be the set of the steps. For n ∈ N , Un be the set of
the units which can execute n, and sn be the step where
n is executed. Let tp,u be the terminal corresponding to
port p when the node that p belongs to is bound to unit
u. Let Ns,u = {n ∈ N | sn = s, u ∈ Un}.
The base variables for our ILP formulation is:

• xn,u (n ∈ N , u ∈ U): 0-1 variable where xn,u = 1 iff
node n is bound to unit u.

In addition, the following auxiliary variables are used:

• cw,t (w ∈ W , t ∈ T): 0-1 variable where cw,t = 1 iff
there is a connection from w to t.

• mt (t ∈ T): integer variable representing the multi-
plexer cost on t.

• uu (u ∈ U): 0-1 variable where uu = 1 iff unit u is
used.

• pu (u ∈ U): integer variable representing the maxi-
mum path delay from registers to the outputs of u.

We have the following six constraints.

1. Each node is bound to a unit:

∀n ∈ N :
∑

u∈Un

xn,u = 1

2. Each unit is used at most once during a step:

∀s ∈ S ∀u ∈ U :
∑

u∈Ns,u

xn,u ≤ 1

3. For each data dependency, there is a corresponding
connection:

∀(p, q) ∈ E ∀u ∈ Unp ∀v ∈ Unq :
xnp,u + xnq,v − 1 ≤ ctu,p,tq,v .

4. Multiplexer cost:

∀t ∈ T : mt =
∑

w∈W
cw,t − 1.

5. Path delay:

(a) ∀u ∈ R : pu = 0.
(b) ∀(w, t) ∈ (W × T) : puw + (dut −D) ≤ put ,

where D is a constant greater than pmax.
(c) ∀u ∈ F : pu ≤ pmax.

SASIMI 2016 ProceedingsR4-5

- 303 -

The objective in our formulation is to minimize the sum
of the costs of the used units and the multiplexers.

Minimize
∑

u∈U
cuuu +

∑

t∈T
cmuxmt.

III. Partitioned and Partially Real
Constrained Approach

When the ILP model for binding is too large to solve, it
may be partitioned. One simple way is to determine the
binding for k steps at a time. To lessen the degradation of
solution quality, this paper proposes to incorporate con-
straints regarding other steps without integer restriction,
into those of the steps that are being solved.

At each iteration, we partition the set of steps S into
four disjoint sets SS , SI , SR, and SN . SS is the set of
the already solved steps and SI is the set of the steps
to be solved at the current iteration. SR is the set of
the steps in which constraints are relaxed. All the con-
straints regarding SN are ignored in the current iteration.
In the initial iteration, SS is empty and binding for SI is
searched using the integer constraints of SI and the real
constraints of SR. Then, in the next iteration, SS is set
to SS ∪ SI and new SI and SR is chosen. It is preferable
to set SR = S − (SS ∪ SI), but SR are chosen so that the
subproblem is solved within feasible time.

In this formulation, all the auxiliary variables cw,t, mt,
uu, pu are now real variables. xn,u are handled as follows:

• xn,u where n ∈ SS is replaced by its solution.

• xn,u where n ∈ SI is unchanged.

• xn,u where n ∈ SR is a real variable (0 ≤ xn,u ≤ 1).

• All the constraints 1–3 regarding xn,u where n ∈ SS

are removed.

IV. Experimental results

A binding program based on the proposed method has
been implemented. CPLEX 12.6.1.0 is used as an ILP
solver. The main program itself is written in Perl5, and
ILP models and results are passed via intermediate files.
Steps for SI and SR are simply chosen in the order of
appearance in given CDFG files.

TABLE I summarizes the result of the experiment on
three models. “ellip” has 75 nodes which are scheduled
into 17 steps where chaining up to three operations has
been performed. In the first run, |SI | and |SR| are set to
1 and 0, respectively, which is equivalent to the bipartite
matching based method [2]. The cost is in terms of the
total cost function in ILP where the costs of an ALU, a
multiplier, an MUX, and a register are 32, 128, 32, and 32,
respectively. The CPU time was on 1.7GHz Core i7 with
8GB memory for “ellip” and “s2m”, and 3.4GHz Core
i7 with 16GB memory for “RSA.” By solving 5 steps at
a time, the cost is reduced significantly. However, our
method with |SI | = 1 and SR being the set of all the
unsolved steps found better solution within less computa-
tion time. Similar result is obtained on the second model
“s2m” with almost the same size. The third model is an
RSA codec whose CDFG is generated from a C program
by a high-level synthesizer. Chaining is not performed.
Since the number of the nodes in a step varies largely,
we partitioned the step set by the number of nodes. s(n)
is the minimum number of the next steps that include n

TABLE I
Experiments on small scale examples.

|N | |S| |SI | |SR| cost CPU [s]
ellip 75 17 1 0 1,456 1.07 ∗

5 0 1,296 357.99 ∗
1 all 1,264 20.68 ∗

s2m 81 14 1 0 1,264 0.59 ∗
6 0 1,168 1.89 ∗
7 0 1,136 5.98 ∗
1 all 1,136 3.27 ∗

RSA 5,417 854 1 0 12,032 2950.61 ∗∗
s(30) 0 9,728 206.05 ∗∗
s(30) s(870) 8,992 8271.24 ∗∗
s(350) 0 9,408 8913.13 ∗∗
s(400) 0 9,248 7555.20 ∗∗

N : set of nodes, S: set of steps
SI : set steps solved by ILP, SR: set steps solved by LP
cost: ALU=32, multiplier=128, MUX=32(#in−1), register=32

all: all the unsolved steps (namely, SR = S ∪ SS ∪ SI and SN = φ)
s(n): the minimum number of the next steps that include n nodes

* 1.7GHz Core i7 (8GB memory), ** 3.4GHz Core i7 (16GB memory)

nodes; when the next 3 and 4 steps have 25 and 35 nodes,
respectively, then s(30) = 3. By solving multiple steps
at a time, costs become significantly less than the bipar-
tite matching method1, but the proposed method found
a better solution with the same amount of CPU time.

Note that the result is highly dependent on the model,
due to the complex nature of the biding problem. There
were also cases where the normal partitioning method
with SR = φ found better solution than our method.

V. Conclusion

This paper has presented a method of incorporating a
global view in partitioned ILP based binding. We are now
working on further experiments to refine the method.

Acknowledgement

Authors would like to thank all the members of Ishiura
Lab. of Kwansei Gakuin University. This work was partly
supported by JSPS KAKENHI Grant Number 16K00088 .

References

[1] Daniel D. Gajski, Nikil D. Dutt, Allen C-H Wu, and Steve
Y-L Lin: High-Level Synthesis: Introduction to Chip and
System Design, Kluwer Academic (1992).

[2] C.-Y. Huang, Y.-S. Chen, Y.-L. Lin, and Y.-C. Hsu: “Data
path allocation based on bipartite weighted matching,” in
Proc. 27th DAC, pp. 499-504 (June 1990).

[3] J. Cong and J. Xu: “Simultaneous FU and register bind-
ing based on network flow method,” in Proc. DATE 2008,
pp. 1057–1062 (Mar. 2008)

[4] W.-T. Shiue and C. Chakrabarti: “ILP-based scheme for
low power scheduling and resource binding,” in Proc. IS-
CAS 2000, vol. 3, pp. 279–282 (May 2000).

[5] Y. Hara-Azumi and H. Tomiyama: “Clock-constrained si-
multaneous allocation and binding for multiplexer opti-
mization in high-level synthesis,” in Proc. ASP-DAC 2012,
pp. 251–256 (Jan.–Feb. 2012).

[6] A. Kondratyev, L. Lavagno, M. Meyer, Y. Watanabe:
“Share with care: A quantitative evaluation of sharing
approaches in high-level synthesis,” in Proc. DATE 2013,
pp. 1547–1552 (Mar. 2013).

1The CPU time for |SI | = 1 is unexpectedly large because of
many file I/Os for repetitive invocations the ILP solver. Proper
implementation will reduce it to far smaller time.

- 304 -

