
High-Level Synthesis of Embedded Systems Controller from Erlang

Hinata Takebayashi 1 Nagisa Ishiura 1 Kagumi Azuma 1 Nobuaki Yoshida 2 Hiroyuki Kanbara 2

1 Kwansei Gakuin University, Sanda, Hyogo, Japan
2 ASTEM RI, Kyoto, Japan

Abstract— This article presents a method of spec-
ifying the behavior of embedded systems by a subset
of Erlang, from which RTL hardware is synthesized.
The behavior of the systems is modeled by concurrent
processes communicating with each other by message
passing. Assembly codes of the BEAM virtual ma-
chine compiled from Erlang programs are converted
into CDFGs (control dataflow graphs), which are syn-
thesized into Verilog HDL by the back-end of the high-
level synthesizer ACAP. Complex routines to handle
message passing and garbage collection are synthe-
sized into library modules by the ACAP from reduced
C implementation of the BEAM interpreter. A pro-
totype system based on the proposed method imple-
mented in Perl5 has successfully synthesized a simple
two-process Erlang program into logic-synthesizable
Verilog HDL codes.

I. Introduction

Embedded systems are widely implemented in con-
sumer electronics, automobiles, medical appliances, in-
dustrial electronics, etc. In order to meet various needs
for these products, higher functionalities and higher per-
formance as well as smaller dimensions and lower power
consumption are required to the embedded systems.

An embedded system is commonly implemented as a
combination of hardware, processors, and software run-
ning on them. When it is difficult to achieve com-
patibility between performance and power consumption,
some functionalities originally implemented as software
are migrated to hardware. In order to expedite such re-
implementation, various methodologies to automate hard-
ware design based on high-level synthesis [1] have been
proposed [2, 5].

However, with the recent rapid development of the net-
work environment and advent of new services and appli-
cations utilizing it, networking or coordination of multiple
embedded systems is being required. The embedded sys-
tems are getting more and more sophisticated in this sense
also. It is a next challenge to establish new methodologies
to model and to automate design of such communication
oriented systems.

Embedded systems can be regarded as a kind of reac-
tive systems which perform certain tasks in response to
external events. In order to implement sophisticated con-
trollers which respond to multiple types of events, a mod-
elling based on concurrent processes and interrupts would
be necessary. Although real-time operating systems may
alleviate the complexity of implementing such systems,
high-skills are required to specify interrupt handling and

to guarantee response time.

Alternative approach to address this issue is to use do-
main specific languages which orient event processing and
concurrency specification. Erlang [3] is a concurrency
oriented functional programming language which is origi-
nally developed for implementing telephony switches. Al-
though it is widely used in the area of telecommunica-
tions, e-commerce, instant messaging, etc., there are some
attempts to use Erlang for embedded systems [4], based
on a observation that concurrent processes and message
passing will allow succinct description of event processing.
If hardware is automatically derived from Erlang specifi-
cation, advanced sophisticated systems would be easily
implemented as efficient devises with higher response and
smaller power consumption than processor-based systems.

Thus, this paper proposes a way of specifying the be-
havior of embedded systems in a subset of Erlang and a
method of synthesizing RTL hardware description from
the specification. In our modeling, external events ar-
riving at Erlang ports are dealt with by multiple Erlang
processes acting in corporation with each other and re-
sulting events are sent out from Erlang ports. In our
synthesis method, each Erlang process is implemented as
a separate hardware module. Assembly codes of BEAM
virtual machine obtained by compiling the input Erlang
programs are translated into CDFGs (control dataflow
graphs), from which Verilog HDL codes are generated
by the back-end of the high-level synthesizer ACAP [5].
Hardware for complex tasks such as message passing or
garbage collection, which are difficult to embed into the
CDFGs, is generated from reduced C programs of the
BEAM interpreter using ACAP.

A prototype synthesis system based on the proposed
method is implemented in Perl5, which succeeded in gen-
erating Verilog HDL codes from a simple Erlang control
program comprising of two processes.

II. Erlang and High-Level Synthesis

A. Programming Language Erlang

Erlang [3] is a concurrency oriented functional pro-
gramming language originally developed by Ericsson. Er-
lang expresses concurrency in terms of multiple processes
which are generated dynamically and communicating with
each other. Information is shared among the processes
by message passing, instead of shared variables. The
lightweight nature of the processes enables massively con-
current processing of a huge volume of messages.

Fig. 1(a) is a small example of an Erlang program. It
defines a function iprod which computes the inner prod-

SASIMI 2016 ProceedingsR4-2

- 285 -

1: -module(iprod).
2: -export([iprod/2]).
3:
4: iprod(A,B) -> iprod3(A,B,0).
5:
6: iprod3([],[],X) -> X;
7: iprod3([AH|AT],[BH|BT],X) -> iprod3(AT,BT,AH*BH+X).

(a) Inner product of lists.

01: -module(area_server).
02: -export([start/0, area/2]).
03:
04: start() ->
05: spawn(fun loop/0).
06:
07: loop() ->
08: receive
09: {From, {rectangle, Width, Ht}} ->
10: From ! {self(), Width * Ht},
11: loop();
12: {From, {circle, R}} ->
13: From ! {self(), 3.14159 * R * R},
14: loop();
15: {From, Other} ->
16: From ! {self(), {error, Other}},
17: loop()
18: end.
19:
20: area(Pid, Request) ->
21: Pid ! {self(), Request},
22: receive
23: {Pid, Response} -> Response
24: end.

(b) Area server [3].

Fig. 1. Examples of Erlang programs.

uct of two vectors in the lists. Alphanumeric strings start-
ing with lower case letters are identifiers for functions or
atoms (named constants), while alphanumeric strings be-
ginning with upper case letters represent variables. Oper-
ator “->” defines a function. Erlang variable are of single
assignment; each variable is assigned only once. Erlang
supports integers of arbitrary precision and floating point
numbers, as well as tuples (compound data with a fixed
number of elements between “{” and “}”) and lists (com-
pound data with a variable number of elements between
“[” and “]”).

Fig. 1(b) shows another example which defines a server
that computes and returns the area of a given rectangular
or a circle [3]. Processes are generated by the spawn func-
tion, and message send and receive are expressed by the
“!” operator and the receive statement, respectively.
When function start is called, spawn in line 5 generates
a process that executes loop in lines 7–18 and returns
the ID of the process. Function area in line 20 takes this
process ID and data Request, and returns the area of the
object in the data. Operator “!” in line 21 sends a tu-
ple {self(), Request} to the process whose ID is Pid.
It sends self(), its own process ID, together with data
Request because it wants the server to send the result
back. Each process has a queue to receive messages di-
rected to the process. The process takes the messages out
of the queue by the receive statements as in lines 9–17
and 22–24, which select messages by pattern matching.
Timeout may be specified with the receive statements
optionally.

B. Execution of Erlang Programs

Erlang programs are compiled into byte codes of the
BEAM virtual machine, which are executed by a BEAM

01: {function, iprod, 2, 2}.
02: {label,1}.
03: {func_info,{atom,iprod},{atom,iprod},2}.
04: {label,2}.
05: {move,{integer,0},{x,2}}.
06: {call_only,3,{f,4}}.
07:
08: {function, iprod3, 3, 4}.
09: {label,3}.
10: {func_info,{atom,iprod},{atom,iprod3},3}.
11: {label,4}.
12: {test,is_nonempty_list,{f,5},[{x,0}]}.
13: {get_list,{x,0},{x,3},{x,4}}.
14: {test,is_nonempty_list,{f,3},[{x,1}]}.
15: {get_list,{x,1},{x,5},{x,6}}.
16: {gc_bif,’*’,{f,0},7,[{x,3},{x,5}],{x,0}}.
17: {gc_bif,’+’,{f,0},7,[{x,0},{x,2}],{x,2}}.
18: {move,{x,6},{x,1}}.
19: {move,{x,4},{x,0}}.
20: {call_only,3,{f,4}}.
21: {label,5}.
22: {test,is_nil,{f,3},[{x,0}]}.
23: {test,is_nil,{f,3},[{x,1}]}.
24: {move,{x,2},{x,0}}.
25: return.

Fig. 2. BEAM assembly for Fig. 1(a).

3 000000
Port1 0111
data 001011

01
item 001011

01
2 1111

01
3 1111

(nil) 111011

x registers

heap{Port1, data, [item, 2, 3]}

100
1
2
3
4
5

tuple

list

Fig. 3. Internal representation of tuple and list.

interpreter1. The BEAM VM has x registers of 1024
words, program counter PC, and stack pointer SP. The
Erlang program in Fig. 1(a) compiles to the BEAM as-
sembly code in Fig. 2.

Besides x registers, each process has its own memory
storage area. The bodies of aggregate data such as lists
and tuples are kept in the heap region, while the frame
data for functions are stored in stack region. If enough
space for new data is not available on the heap or the
stack, the dead cells in the heap are collected by garbage
collection.

The BEAM VM has about 150 instructions, which are
roughly classified into the 5 categories:

• Arithmetic and logic operations,

• List and tuple manipulation,

• Jumps and function calls,

• Memory management, and

• Message send/receive.

All the data in Erlang are expressed in terms of the
Eterm, which can be stored in a 32-bit word. Fig. 3 illus-
trates the status of the heap when an Eterm to represent
{Port1, data, [item, 2, 3]} is in register x[0]. A tag
to identify the basic type of the Eterm is stored in the
lower 2 bits of the word, where b’10’ and b’01’ stand for
a tuple and a list, respectively, and the remaining 30 bits
serve as pointers. A tuple with 3 elements consists of 4

1 There exists a native compiler HiPE which, however, is sup-
ported by limited platforms.

- 286 -

L

+

+

<<

L

+

S

+

lwlw

addu

sll

sw

-32760-32756

-32764

...
lw v1,-32756(gp)
lw v0,-32764(gp)
nop
addu v0,v1,v0
sll v0,v0,0x2
sw v0,-32760(gp)
...

CDFG

CDFG generator

objdump

MIPS binary

gcc

C

optimization

scheduling

binding

Verilog
HDL

RTL IR

composer

library info
gas

asm

Fig. 4. High-level synthesizer flow in ACAP [5].

words, with 1 word representing the size and the rest for
the elements. Each element in a list is expressed using 2
words for its car and cdr. A signed integer with up to 28
bits is represented within a single word, with the lower 4
bits being b’1111.

The message queue of each process is implemented as
a linear list. When a message consisting of a single word
is sent to the process, a message object is allocated and
is appended to the queue. If the message points to an
aggregate structure in the heap, the data must be dupli-
cated so that the message can point to the copy. Note
that the copy is not directly written into the heap of the
recipient process. The copy is first created in a “heap
fragment” area which is a newly allocated and linked to
the message, and reproduced into the heap of the recip-
ient when it executes a receive instruction. Each pro-
cess has the “current message pointer.” When the pro-
cess execute the receive instruction, the message pointed
by the current message pointer (the current message) is
copied to x[0] register. If pattern matching succeeds on
the message, the message is removed from the queue by a
remove message instruction. If not, the current message
pointer is advanced by one by save message instruction
and the matching is attempted on the next message.

When n bytes are received on an input port, they are
delivered to the receiving process as a list of n elements.
Contrarily, processes can send a list of byte data to the
output port, which is emitted as a byte sequence.

C. High-Level Synthesis System ACAP

ACAP [5] is a high-level synthesizer which generates
RTL hardware description from C programs or MIPS bi-
nary codes. The flow of synthesis is sown in Fig. 4. A
binary code generated by GCC or GAS (the GNU as-
sembler) is once disassembled to an assembly code, which
is analyzed and translated into a CDFG. Conventional
scheduling and binding techniques are applied to the
CDFG to generate an RTL code in Verilog HDL.

III. Describing Embedded Systems Control by
Erlang

In our method, the behavior of a target system is ex-
pressed in terms of multiple Erlang processes. Namely,
it is assumed that all the processes are created at the

port0 port1proc0

proc1

(a) Communication among processes and ports.

01: -module(roomba).
02: -export(start/0).
03:
04: start() ->
05: spawn(fun() ->
06: register(proc1, self()),
07: loop1(0, 0)
08: end),
09: spawn(fun() ->
10: register(proc0, self()),
11: Port0 = open_port({spawn, "stdbuf -i0 -o0 -e0 od

-h -w8 /dev/input/js0 | ./controller"}, {packet, 2}),
12: Port1 = open_port({spawn, "./roomba"}, {packet, 2}),
13: loop0(Port0, Port1)
14: end).
15:
16: decode(Dt,Dh,Et,Eh) ->

{((Dh bsl 8) bor Dt), ((Eh bsl 8) bor Et)};
17: decode(X) -> X.
18:
19: loop0(Port0, Port1) ->
20: receive
21: {Port0, {data, Data}} ->
22: Data2 = decode(Data),
23: proc1 ! {proc0, data, Data2},
24: loop0(Port0, Port1);
25: {proc1, Data3} ->
26: Port1 ! {proc0, {command, Data3}},
27: loop0(Port0, Port1);
28: {Port1, _} ->
29: loop0(Port0, Port1);
30: _ ->
31: loop0(Port0, Port1)
32: end.
33:
34: loop1(D, T) ->
35: receive
36: {proc0, data, Data} ->
37: {Drive, Turn} = calc(Data, D, T),
38: Cmd = encode(Drive, Turn),
39: proc0 ! {proc1, Cmd},
40: loop1(Drive, Turn);
41: X ->
42: proc0 ! X,
43: loop1(D, T)
44: end.
45:
46: calc({Para, X}, Drive, Turn) ->
47: if
48: X == 258 -> {Para, Turn};
49: X == 1026 -> {Para, Turn};
50: X == 2 -> {Drive, Para};
51: X == 770 -> {Drive, Para};
52: true -> {0, 0}
53: end.
54:
55: encode(Drive, Turn) ->
56: if
57: Drive =< 57343, Drive >= 32768 ->
58: if
59: Turn =< 57343, Turn >= 32768 -> {146, 0, 127, 0, 63};
60: Turn =< 32767, Turn >= 12288 -> {146, 0, 63, 0, 127};
61: true -> {146, 0, 127, 0, 127}
62: end;
63: Drive =< 32767, Drive >= 8192 ->
64: if
65: Turn =< 57343, Turn >= 32768 -> {146,255,127,255,63};
66: Turn =< 32767, Turn >= 12288 -> {146,255,63,255,127};
67: true -> {146,255,127,255,127}
68: end;
69: true ->
70: if
71: Turn =< 57343, Turn >= 32768 -> {146,255,127,0,127};
72: Turn =< 32767, Turn >= 12288 -> {146,0,127,255,127};
73: true -> {146,0,0,0,0}
74: end
75: end.

(b) Behavior description by Erlang.

Fig. 5. Example of Erlang description.

system initialization time and there is no dynamic cre-
ation/deletion of processes.

Input/output of the system is performed via Erlang
ports, which receive/send byte sequences. Handling of
events are regarded as messages passed among Erlang
processes and ports. In this paper, communication only

- 287 -

Erlang proc0
 f0()
 f2()
proc1
 f1()
 f2()
 f3()
 f4()

HW0

HW1

start() ->
 spawn(f0)
 spawn(f1)

f0()

f1()

f2()

f3()

f4()

Fig. 6. Hardware modules for Erlang processes.

within the system is handled. Namely, communication
via TCP/IP with processes in external systems is out of
the scope of this paper. A receiver of a message, which
comes on the left-hand side of a “!” operator, may be
specified in terms of an expression as long as it evaluates
to an ID of a process or a port at run time. The data
types handled in this paper are limited to 28-bit signed
integers, lists, and tuples. Closures are not handled in
this paper.

Fig. 5 is a small example of control description by our
Erlang subset. The controller receives signals from button
presses indicating the directions to move and sends out
corresponding signals to the driving devise.

The behavior of the controller can be modeled with two
ports and two processes, as illustrated in Fig. 5(a). Port
port0 receives signal data from the buttons and sends
control signal data to port port1. Process proc1 just
translates the input signal data to the output signal data.
Process proc0 is in charge of data transmission; on re-
ceiving data on port0, it requests translation to proc1
and sends the results out via port1.

An Erlang code is shown in Fig. 5(b). start in line 4
initializes the whole system, creating processes proc1 and
proc0 in lines 5 and 9, respectively. proc1 executes the
body loop1 in lines 34–44. proc0 opens the two ports in
lines 11 and 12 and executes the body loop0 (lines 19–
32). Lines 21–24 describe the behavior that when proc0
receives data from Port0 it decodes the data and send
them to proc1 for requesting translation. In lines 25–27,
the results are sent back from proc1, which are forwarded
to Port1. The other messages are ignored (lines 28–31).

IV. High-Level Synthesis from Erlang

A. Overview

This paper presents a method of synthesizing RTL
hardware from control description written in the Erlang
subset described in the previous section. In this method,
each Erlang process is synthesized into a single hardware
module so that processes can run independently of each
other except for during interprocess communication. The
overhead for scheduling and management of processes are
eliminated. The method is this paper assumes that all the
data of the processes are placed in a single main memory.

An Erlang process may execute multiple functions. In
our method, all the functions for each process, which are
recognized by static analysis, are synthesized into a sin-
gle hardware module. For example, in Fig. 6, processes
proc0 and proc1 call functions f0 and f1, respectively,

Erlang

erlc

BEAM code

CDFG generator

CDFG

ACAP

Verilog HDL

libraries (C)

+

ACAP

Verilog HDL

A

B

Fig. 7. Synthesis flow of proposed method.

+

x[1]x[0] b’1111

-

x[2]

(a) addition

ld +

x[0] b’01 4

x[1]

x[2]

-

ld

(b) get list

eq

nilx[0]

next

f4

(c) is nonempty list

Fig. 8. Conversion from BEAM instruction to DFG.

and f0 calls f2, and f1 calls f2, f3, and f4. Then, hard-
ware module HW0 that implements proc0 should be able
to execute f0 and f1, and HW1 for proc1 should execute
f1, f2, f3, and f4. In this case, a hardware fraction to
execute f2 should appear in both HW0 and HW1.

The flow of synthesis is illustrated in Fig. 7. A given
Erlang program is compiled by erlc, an Erlang com-
piler, into a BEAM assembly code, from which CDFG
is constructed. By feeding the CDFG into the back-end
of high-level synthesizer ACAP, a Verilog HDL code is
obtained. Since some BEAM instructions involve com-
plex tasks such as message passing and garbage collec-
tion which would be difficult to embed into the CDFG.
In our method, these tasks are implemented as separate
hardware modules, called “library modules,” which are
called from the CDFG. The library modules are synthe-
sized from a reduced C code of the BEAM interpreter by
ACAP.

B. Converting BEAM Assembly to CDFG

The BEAM assembly code from erlc is analyzed to cre-
ate a CDFG for each process. First, the initial process to
start the system is scanned to identify all the processes
present in the code. Then, all the functions which may be
called from each process are enumerated. Each function
is decomposed into basic blocks based on branch instruc-
tions and target labels. The instructions in each basic
block is converted into operations of a DFG (dataflow
graph), and finally a CDFG is constructed based on the
overall control flow.

BEAM instructions are translated into DFG operations
as follows.

(1) Arithmetic and bit operations

Since arithmetic and bit operations in Erlang compiles
to gc bif instructions, which execute built-in functions,
they are simply converted into operation nodes of DFGs.
Since the 28-bit integer data handled in this paper has
b’1111 in the lower 4 bits, instructions on them are trans-
lated into operation sequences to manipulate the upper
28-bit fields. For example,

- 288 -

{gc bif, ’+’, {f,0}, 0, [{x,0}, {x,1}], {x,2}}.
adds registers x[0] and x[1] together and puts the result
into x[2], from which the DFG fragment in Fig. 8(a) are
generated. Note that 32-bit datapath is assumed in this
paper. In the case of addition, x[0]+x[1]−b’1111 results
in addition of the upper 28 bits and setting of tag b’1111
in the lower 4 bits.

(2) List and tuple manipulation

Manipulation on list and tuple data are translated into
a sequence of loads and stores on the heap. For example,

{get list, {x,0}, {x,1}, {x,2}}.
takes list x[0], whose upper 30 bits represents the address
of the first element and lower 2 bits are tag b’01, and
extracts its first element (car) and remaining part (cdr)
into x[1] and x[2], respectively. This is compiled into the
DFG fragment in Fig. 8(b) which loads data from the
heap.

(3) Jump and call

Jump instructions are translated into transition among
DFGs. For example,

{test, is noempty list, {f,4}, {x,0}}.
verifies that the list pointed by x[0] is non-empty; if the
test fails, the control is transferred to the instruction la-
beled by f4. It is translated to the conditional control
transfer between DFGs, as shown in Fig. 8(c). A call
instruction

{call, 1, {f,2}}.
saves the return address in CP, the continuation pointer,
and jumps to f2. It is translated to an operation sequence
to save the ID of the return instruction and to transfer
the control. Return to the calling point is achieved based
on the table which maps the instruction IDs to the states.

(4) Manipulation of the heap and the stack

When the instructions to secure memory cells on the
heap or the stack do not find enough free cells, they trig-
ger garbage collection (GC), which are processed by the
library module attached to the process module. Thus,
these instructions are converted into a DFG fragment to
call the library module which consists of 1) stores of argu-
ments, 2) store to variable to activate the library module,
3) polling to wait for the completion of the library module,
and 4) loads of the results.

(5) Message passing

Message passing also involves complex tasks such as
copy of heap data and garbage collection, which are also
converted into a DFG fragment to call the library module.

C. Port Module

It is assumed that a byte sequence arriving at an in-
put port is kept in a buffer attached to the port and
that an outgoing byte sequence from an output port is
written into a buffer attached to the output port. For
each output port, a library module is created. On receiv-
ing messages from processes, the library module for the
output port interprets the message data in the internal

mem1mem0

plib1plib0

proc1

main memory

proc0

tlib1

buff0 buff1

Fig. 9. Hardware configuration for the model in Fig. 5(a).

format and writes the corresponding byte sequences into
the buffer. Input ports do not have dedicated hardware;
message transfer is handled by the library modules of the
receiving processes (as is described in the next subsec-
tion).

D. Library Module

A Library module is in charge of complex tasks such as
heap manipulation and message passing.

In the method presented in this paper, one library mod-
ule is provided for a process or an output port. The library
module reads and writes the local memory (the heap and
the stack) for the process, or the buffer of the output port.
It also reads the local memories for the processes or the
buffers for the input ports which may send messages to
the process. For example, in the case of the example in
Fig. 5(a), the configuration of the hardware is as shown in
Fig. 9. Process modules proc0 and proc1 read/write their
own local memories mem0 and mem1, respectively. In-
coming and outgoing byte sequences are stored in buffer0
and buffer1, respectively. plib0 and plib1 are the library
modules of proc0 and proc1, respectively, and tlib1 is the
library module for port1. plib0 reads/writes mem0 as well
as it references mem1 and port0, for there may be mes-
sages from proc0 and the input port. On receiving mes-
sage from proc0 to port1, tlib1 reads mem0 and writes
decoded data to buff1.

The library module executes the following six functions.

(1) test heap m, n

Test if m free words are available on the heap. If not,
call garbage collection. n is the number of the x registers
which must be protected from garbage collection.

(2) allocate m, n

Expand the stack region by m+1 words by updating
SP. If necessary free words are not available in the local
memory, do garbage collection.

(3) send

Send a value in x[1] as a message to the process or the
port indicated by x[0].

In the method of this paper, queueing of the message
and copy of its accompanying heap data are handled by
the library module of the recipient. So, this task just sets
the flag to notify the existence of the new message. The
flag is prepared for each of all the possible combinations
of sender processes/ports and receiver processes/ports.

The library module of the recipient process polls the
flag, and as soon as the flag is set, it enqueues the message
and copies the accompanying data to the mini heap. If

- 289 -

a process receives messages from multiple senders, the
messages are processed one by one. After the queueing
process, the library module of the receiver resets the flag,
then the sender library module returns the control to the
process module.

(4) receive

Copy the current message in the queue to x[0] and copy
any data attached to the message. If enough free words
are not available in the heap, do garbage collection.

(5) remove message

Deletes the current message, which matches with a cer-
tain pattern, from the message queue.

(6) save message

Just proceed the current message pointer by one when
all the matches on the current message fail.

The library modules are controlled by means of polling.
Let RUN i be the variable or the register to control the
library module of process i. When RUN i is 0, the li-
brary module is idle. When the process want to activate
the library module, it writes the number (1 through 6)
of the desired function into RUN i after writing the ar-
gument values into the local memory. Then the library
module executes the function indicated by RUN i, stores
the result in the memory, and resets RUN i. As soon as
RUN i is turned off, the process module loads the result
and resumes its tasks.

V. Implementation

A prototype high-level synthesizer based on the pro-
posed method has been implemented which runs on
Ubuntu Linux and Mac OS X. The BEAM to CDFG
translator (A© in Fig. 7) is implemented in Perl5. All
the operations in CDFGs are based on 32-bit datapath
of ACAP. The C library programs (B© in Fig. 7) are ob-
tained by extracting and reducing the necessary portions
from the source code of the BEAM interpreter of Erlang
OTP 18.1.3. The original codes for handling the message
queues and copy of the heap data were used almost with-
out modification, though unnecessary codes are deleted
and dynamic memory allocation was rewritten into static
memory allocation. While the original version of the
garbage collector in the BEAM interpreter is based on
the mark-and-sweep method with two dynamic regions,
our prototype adopted rather simple method which alter-
natively use two statically allocated regions. As for the
data structure to bookkeep processes and the routines for
message passing, simple versions that met our require-
ments were newly coded. The C programs were tested on
a PC (with x86 CPU) and then synthesized into Verilog
HDL codes by ACAP.

TABLE I summarizes the metrics of the FPGA based
hardware synthesized from the Erlang specification in Fig.
5 (with the structure in Fig. 9). “LUTs”, “FFs” and
“delay” are the numbers of the LUTs and FFs, and the
critical path delay, respectively, obtained by Xilinx ISE
14.3 targeting Spartan6. The size of the process modules
is roughly proportional to the size of the BEAM assembly
codes. Considering the amount of the tasks performed by

TABLE I
Synthesis result of Erlang code in Fig. 5.

LUTs FFs delay [ns]
proc0 3,835 686 18.929
proc1 4,380 451 18.929
plib0 24,643 1435 21.414
plib1 23,916 1384 21.468
tlib1 24,405 1403 21.541

Logic synthesis: Xilinx ISE 14.3, target: Spartan6

the processes, the hardware may be too large. The size
of the library modules is independent of the size of the
processes. The current hardware is also considered to be
a little too large. The reduction of the hardware size is
definitely one of the most important next tasks in this
project.

VI. Conclusion

This paper has presented a method of high-level syn-
thesis from control specification of embedded systems by
Erlang. A prototype synthesizer has implemented which
has generated Verilog codes from a simple example with
communicating two processes.

Currently, the resulting hardware is too large for prac-
tical use. There are still many measures to reduce the
hardware size, on which we are now working. Another
drawback of the current method is that all the process
modules access a single shared memory. Since this ap-
parently produces bottlenecks, we are also working on a
distributed memory architecture for the synthesized hard-
ware.

Acknowledgement

Authors would like to express their appreciation to
Prof. Hiroyuki Tomiyama of Ritsumeikan University, and
Mr. Takayuki Nakatani (formerly with Ritsumeikan Uni-
versity) for their discussion and valuable comments. We
would also like to thank to the members of Ishiura Lab.
of Kwansei Gakuin University. This work is partly sup-
ported by JSPS KAKENHI Grant Number 16K00088.

References

[1] Daniel D. Gajski, Nikil D. Dutt, Allen C-H Wu, and Steve
Y-L Lin: “High-Level Synthesis: Introduction to Chip and
System Design,” Kluwer Academic Publishers (1992).

[2] S. Shibata, S. Honda, H. Tomiyama, and H. Takada: “Ad-
vanced SystemBuilder: A tool set for multiprocessor de-
sign space exploration,” in Proc. ISOCC 2010, pp. 79-82
(Nov. 2010).

[3] Joe Armstrong: Programming Erlang: Software for a Con-
current World, Pragmatic Bookshelf (2007).

[4] Brian Chamberlain: Using Erlang on the Rasp-
berryPi to interact with the physical world (on-
line), http://www.slideshare.net/breakpointer/
using-erlang-on-the-raspberrypi (accessed 2016-02-
04).

[5] N. Ishiura, H. Kanbara, and H. Tomiyama: “ACAP: Bi-
nary Synthesizer Based on MIPS Object Codes,” in Proc.
ITC-CSCC 2014, pp. 725–728 (July 2014).

- 290 -

