
Random Testing of Back-end of Compiler Infrastructure LLVM

Kenji Tanaka 1 Nagisa Ishiura 1 Masanari Nishimura 2 Akiya Fukui 2

1 Kwansei Gakuin University, Sanda, Hyogo, Japan
2 Renesas System Design, Co., Ltd., Tokyo, Japan

Abstract—This paper presents a method of directly
testing back-ends of the LLVM compiler infrastruc-
ture by randomly generated LLVM IR (intermediate
representation). Using LLVM, a compiler for a new
target can be developed only by implementing a ma-
chine dependent back-end, then the test of the back-
end becomes a focusing issue. However, there are
some LLVM instructions which can never or rarely
be tested by C programs. The proposed method gen-
erates random LLVM IR assembly codes intended to
include such instructions. In an experiment on LLVM
3.5 for x86 64 has detected an error case which is hard
to test by C programs.

I. Introduction

The compiler infrastructure LLVM [1] is widely utilized
for developing compilers for newly developed embedded
processors or for developing high-level synthesizers [2, 3].
Modularity is one of the main points of LLVM. In order to
develop a compiler for a new target (including RTL hard-
ware), one only has to implement a back-end dedicated
to the target.

This also means that during the test phase one can
focus on the back-end. However, in the later stage, where
a huge set of test cases are needed to detect unexpected or
latent bugs, usually test suites in the form of C programs
[4] or randomly generated C programs [5] are used.

There are cases where C programs can never or rarely
test some functions in the back-end, due to various trans-
formations performed before the back-end. Integer arith-
metic on the short integer is such an example, because
they are promoted to that of the machine word size ac-
cording to the semantics of C. However, short integers
may be used in compilation of other languages without
integer promotion, or in future optimization.

To address this issue, this paper proposes a random test
method that directly generate test programs in the form
of the LLVM IR. It can generate test cases containing
all the arithmetic operations uniformly without affected
by the front-ends. A test generator based on the method
has successfully found an error program for LLVM 3.5 for
x86 64 which is hard to test by C programs.

II. Compiler infrastructure LLVM

LLVM [1] consists of three parts; front-ends convert
program texts into intermediate representation named
LLVM IR, the middle-end performs target independent
analysis and optimization on LLVM IR, and back-ends
apply target dependent optimization and generate ob-
ject codes. The optimization in the back-ends includes
instruction selection, instruction scheduling, register as-
signment, peephole optimization, etc., which utilize deep

1 @x0 = internal global i16 20, align 2
2 @x3 = constant i16 30, align 2
3 @.str = private unnamed_addr constant 6 x i8 c "@OK@\0A\00

", align 1
4 @.str1 = private unnamed_addr constant 18 x i8 c "@NG@ (te

st = %hhd)\0A\00", align 1
5 ; Function Attrs: nounwind uwtable
6 define i32 @main() #0{
7 %def_t0 = alloca i16, align 2
8 store i16 10, i16* %def_t0, align 2
9 %l_t0 = load i16* %def_t0, align 2

10 %l_x0 = load i16* @x0, align 2
11 %l_x3 = load i16* @x3, align 2
12 %t0 = add i16 %l_x3, %l_x0
13 %cp_t0 = icmp eq i32 %t0, 50
14 br i1 %cp_t0, label %2, label %3
15 ; <label>:2
16 %true_pr0 = call i32 (i8*, ...)* @printf(i8* getelementptr

inbounds (6 x i8* @.str, i32 0, i32 0))
17 br label %4
18 ; <label>:3
19 %ng_pr0 = call i32 (i8*, ...)* @printf(i8* getelementptr i

nbounds (18 x i8* @.str1, i32 0, i32 0), i32 %t0)
20 br label %4
21 ; <label>:4
22 ret i32 0
23 }

Fig. 1. An example of an LLVM test program.

knowledge on the instruction architecture and the mi-
croarchitecture of the target.

Most functions of the back-ends are well tested by C
compiler test suites [4] or randomly generated C programs
[5], but some are not. For example, 8-bit and 16-bit inte-
ger arithmetic operations never appear in the LLVM IR
for 32-bit machines, due to the integer promotion rule of
the C language, except when the middle-end optimizer
occasionally reduces the bit widths. Another example is
comparison operation. Only one of either “<” or “≥”
comparison may be generated for the convenience of opti-
mization. Bugs regarding the rarely-used operations may
survive the test, and bugs related to the never-used op-
erations, which are never tested, may be eminent in com-
pilation for other languages or after future improvements
on optimization modules.

III. Random test generation for LLVM
back-ends

The proposed method generates random LLVM IR as-
sembly codes. Fig. 1 is an example of a test code. Lines
1, 2, 7, and 8 declare and initialize variables and lines
9–12 execute an arithmetic operation, which is on 16-bit
integers. Lines 13–19 verify the result.

The type of an operation in the C language is deter-
mined by the integer promotion rule (to extend short
values to the size used in machine operations) and the
arithmetic conversion rule (to extend to a common type
of the operands). Table I (a) summarizes the rule for the
C language when int is 32-bit (si64 and ui64 are omit-
ted due to space limitation). For example, an operation

SASIMI 2016 ProceedingsR2-1

- 88 -



TABLE I
Integer promotion and arithmetic conversion rules.

(a) C (where int is si32)

si8 ui8 si16 ui16 si32 ui32
si8 si32 si32 si32 si32 si32 ui32
ui8 si32 si32 si32 si32 si32 ui32
si16 si32 si32 si32 si32 si32 ui32
ui16 si32 si32 si32 si32 si32 ui32
si32 si32 si32 si32 si32 si32 ui32
ui32 ui32 ui32 ui32 ui32 ui32 ui32

(b) Proposed LLVM test

si8 ui8 si16 ui16 si32 ui32
si8 si8 ui8 si16 ui16 si32 ui32
ui8 ui8 ui8 si16 ui16 si32 ui32
si16 si16 si16 si16 ui16 si32 ui32
ui16 ui16 ui16 ui16 ui16 si32 ui32
si32 si32 si32 si32 si32 si32 ui32
ui32 ui32 ui32 ui32 ui32 ui32 ui32

sin: n-bit signed integer, uin: n-bit unsigned integer

C program
generator

expression
generator

type rule
(C)

LLVM IR
generator

type rule
(LLVM IR)

test program
(LLVM IR)

test program
(C)

x2x1

+

ASTs

Orange3 framework

Fig. 2. Flow of test program generation.

TABLE II
Frequency of operations in LLVM IR.

op C (-O0) C (-O3) LLVM

i8 i16 i8 i16 i8 i16
add 0 0 4 6 791 1708
and 0 0 3 2 0 0
lshr 0 0 40 35 0 0
mul 0 0 0 0 94 322
sdiv 0 0 0 0 26 143
srem 0 0 0 0 25 128
sub 0 0 0 0 77 320
udiv 0 0 18 16 76 213
urem 0 0 20 22 70 199

with operands of si8 and ui16 is promoted to that of si32.
On the other hand, the proposed method only applies the
arithmetic conversion as shown in Table I (b).

The program generation is achieved by extending Or-
ange3 [5], as shown in Fig. 2. First, a set of abstract
syntax trees (ASTs) is generated, each of which repre-
sents an assignment statement with an expression on the
right-hand side. The ASTs are built carefully not to yield
undefined behavior (such as zero division or signed over-
flow). From the ASTs, an LLVM IR assembly program is
generated. During AST construction, the type conversion
rule in Table I (b) is used instead of (a).

IV. Experimental results

A test program generator based on the proposed
method has been implemented in Perl 5 by extending Or-
ange3. It conforms to the LLVM 3.5.

To see how frequently each operation in LLVM IR is
tested, its appearances were counted in 100 test pro-
grams each of which was designated to contain 100 opera-
tions. The target was x86 64-apple-macosx10.11.0. Table
II summarizes the result. Columns “C (-O0)” and “C (-
O3)” show the case where the tests were in the form of
C programs and compiled with the -O0 and -O3 options,
respectively, and column “LLVM” shows the case for the
proposed method. “i8” and “i16” stand for the 8 and 16-
bit integers, respectively. We can see that the 8 and 16-bit
integer operations were never tested by the C programs
with the -O0 option. Few operations of the short integers
were generated with the -O3 option. On the other hand,
the proposed method can generate much more tests for
most of the operations.

The back-end of LLVM 3.5 for the x86 64 target was
intensively tested by our system. The tests were run on
a PC with Intel Core i7 1.6GHz and 16GB memory and
Ubuntu 14.04 LTS. The result is summarized in Table III.

TABLE III
Result of random test.

types time [h] #test #error
i8, i16, i32, i64 120 183,520 1
i8, i16 120 296,143 1

1 @.str = private unnamed_addr constant 6 x i8 c"@OK@\0A\00"
, align 1

2 @.str1 = private unnamed_addr constant 19 x i8 c"@NG@ (tes
t = %hd)\0A\00", align 1

3 ; Function Attrs: nounwind uwtable
4 define i32 @main() #0{
5 %1 = alloca i32, align 4
6 store i32 0, i32* %1
7 %def_t700 = add i16 0, 1
8 %t700 = srem i16 -32768, -1

9 %cp_t700 = icmp eq i16 %t700, 0
10 br i1 %cp_t700, label %2, label %3
11 ; <label>:2
12 %true_pr700 = call i32 (i8*, ...)* @printf(i8* getelement

ptr inbounds (6 x i8* @.str, i32 0, i32 0))
13 br label %4
14 ; <label>:3
15 %ng_pr700 = call i32 (i8*, ...)* @printf(i8* getelementpt

r inbounds (19 x i8* @.str1, i32 0, i32 0), i16 %t700)
16 br label %4
17 ; <label>:4
18 ret i32 0
19 }
20 declare i32 @printf(i8*, ...) #1

Fig. 3. Error program.

In the first run, the generator was configured to generate
all the types i8 through i64. With 120 hours, 183,520
programs were generated out of which one detected an
error. In the second run, types are restricted to i8 and
i16. In 120 hours, one error was detected. Fig. 3 shows
a minimized error program from the second run. This
should be a valid program but its execution fails with
“floating point exception.” The srem operation in line 8
computes 16-bit signed remainder of −32768 by −1 which
should yield 0. It is well-known that a C program with the
32-bit version (-2147483648%-1) fails for the x86 target.
However, the 16-bit version is hard to test by C programs.

V. Conclusion

This paper has proposed a method of directly testing
back-ends of LLVM by randomly generated LLVM IR,
which targets bugs hard to detect by C programs. Future
work includes experiments on various targets and gen-
eration of test programs which can directly test various
optimization in LLVM back-ends.

Acknowledgement
Authors would like to thank all the members of Ishiura

Lab. of Kwansei Gakuin University. This work was partly
supported by JSPS KAKENHI Grant Number 25330073.

References

[1] LLVM Compiler Project (online), http://llvm.org/.
[2] A. Canis, et al.: “LegUp: High-level synthesis for FPGA-

based processor/accelerator systems,” in Proc. ACM

FPGA ’11, pp. 33–36 (Feb.–Mar. 2011).
[3] J. Cong, B. Liu, S. Neuendorffer, J. Noguera, K. Vissers,

and Z. Zhang: “High-level synthesis for FPGAs: From
prototyping to deployment,” IEEE Trans. CAD, vol. 30,
no. 4, pp. 473–491 (Apr. 2011).

[4] ACE: SuperTest compiler test and validation suite (on-
line), http://www.ace.nl/compiler/supertest.html.

[5] E. Nagai, A. Hashimoto, and N. Ishiura: “Reinforcing ran-
dom testing of arithmetic optimization of C compilers by
scaling up size and number of expressions,” IPSJ Trans.

SLDM, vol. 7, pp. 91–100 (Aug. 2014).

- 89 -


