
Static Scheduling of Dynamic Execution for High-Level Synthesis

Yuki Toda Nagisa Ishiura Kousuke Sone

School of Science and Technology
Kwansei Gakuin University

2-1 Gakuen, Sanda, Hyogo, 669-1337, Japan

Abstract— This paper presents a concept of variable

scheduling for high-level synthesis. While the existing

schedulers assume fixed delays for all the operations,

the latency of memory accesses and serial multipli-

cation/division, for example, may vary depending on

operand values. The new scheduling scheme attempts

to exploit the dynamic delay variations; the control

step to start each operation’s execution is dynamically

adjusted depending on the completion signals from

the preceding operations. Note that the scheduling

is adaptive but static, or precomputed during synthe-

sis, thus the hardware would be simpler than that of

superscalar microarchitecture. Experimental results

show that the number of the execution cycles are re-

duced by about 4 to 18%, although the sizes of the

finite state machines becomes much larger than that

of the conventional fixed scheduling.

I. Introduction

High-level synthesis [1], a technology to auto-generate
register transfer level circuit design from behavioral spec-
ification in programming language such as C, is now be-
coming one of the essential tools to expedite large scale
VLSI system design.

Scheduling is one of the core processes in high-level syn-
thesis in which the operations in a given program (or a
data-flow graph) are assigned to the control steps (exe-
cution cycles) so that maximum performance per cost is
achieved.

Due to the static nature of the scheduling in high-level
synthesis, conventional schedulers decide the execution
timing of the operations assuming that their delay, or the
number of cycles they need to complete their tasks, are
fixed. However, there are some operations whose delays
may vary dynamically. Memory access operations and
serial multiplication/division are such examples. Espe-
cially, changes on the number of cycles for memory ac-
cesses due to cache hit/misshit (or line/row hit/misshit,
in the case of embedded systems) are significantly large.
Dynamic scheduling by hardware, as implemented in su-
perscalar microarchitecture, may be a solution for high-
end and middle-end computing systems, but not for em-
bedded systems where cost and power consumption for
hardware schedulers would be prohibitive.

This paper presents a novel idea of static scheduling of
dynamic execution of such indefinite latency operations.
We assume that completion signals are available from
functional units executing indefinite delay operations and
we try to synthesize circuits which adaptively adjust the
execution timing of operations depending on the comple-
tion signals from the other operations.

Our approach is different from high-level synthesis of
asynchronous circuits [3, 4] in that circuits synthesized
by our method are fully synchronous and the adjustment
of timing is carried out by state based controllers.

We formulate the representation of such scheduling in
terms of a state transition graph and give a list-based
scheduling and binding algorithms for synthesizing reg-
ister transfer level circuits. Experiments on some DFGs
show that the numbers of execution cycles are reduced by
about 4 to 18%, though the sizes of the finite state ma-
chines to control the datapath have grown by more than
10 times.

In the rest of this paper, we first describes examples
of indefinite cycles operations and how such operations
are handled in the conventional scheduling algorithms in
Section 2. We then present the concept of the variable
scheduling and an algorithm for it in Section 3, and show
a binding algorithm in Section 4. After describing the
experimental result obtained so far in Section 5, we give
concluding remarks and future work in Section 6.

II. Indefinite cycle operations and their

scheduling

A. Indefinite cycle operations

Memory accesses (load and store) are typical examples
of indefinite cycle operations. The number of cycles to
complete a load might be one on cache hit but ten on
cache misshit, for example. RAMs with a burst mode
allows faster access to the data within the same row,
where the initial access takes four cycles but the succes-
sive read/write to the same row takes one cycle per each
word, for example. Other examples are serial multipliers
and shift-and-subtract dividors whose latency may vary
depending on the values of the operands.

B. Handling of indefinite cycle operations in conven-
tional scheduling

Figure 1 (a) is a simple example of resource constrained
scheduling. We assume that “L,” a load operation, takes
either one or two cycles while addition always takes one
cycle. We assume that we have two memory access units
and one adder.

One way of handling indefinite latency operation in the
conventional scheduler is to assume the worst case delays:
Two cycles for every load operation, as in Figure 1 (a). In
this case, execution of this DFG always takes five cycles.
Even if f4 finishes its task in a single cycle, f5 must wait
for one cycle to start its execution.

The other extreme is to expect the best case delays, one
cycle for every load operation, as shown in Figure 1 (b).
In case loads do not finish in one cycle, the controller stalls
the entire datapath to avoid data hazards, as in Figure 1
(c).

The latter strategy, however, also fails to give the best
scheduling. If we knew the delays for f1, f2, and f4 are
1, 2, and 2, respectively, as in Figure 1 (c), we could start
f4 one step earlier, as in Figure 1 (d), to reduce the total
cycles to four.

Even though we may assume typical delays or any com-
bination of delays instead of the best/worst case, we can
always find an example where scheduling based on the
fixed delay model is not powerful enough to give the best
scheduling under the existence of indefinite cycle opera-
tions.

� �

�
�

�

��

��

��

��

�	

�

�

��

��

��

�

�

� �

�

�� ��

�� ��

��

(a) Assuming the worst case delay (b) Assuming the best case delay

� !""

� !""

#

#
$

$ %&

'(

)*

+,

-. #
/

/
0

0 12

34

54

67

89 /

(c) Adjustment by stall (d) Ideal scheduling for (c)

Figure 1: Conventional scheduling with indefinite cycle operations.

III. Variable scheduling

A. Variable scheduling and its expression

As a new approach to get more efficient scheduling un-
der the existence of indefinite cycle operations, this paper
presents a concept of variable scheduling.

We generalize the conventional high-level synthesis set-
tings so that the delay (in terms of cycles, in this paper) of
each operation is given in the form of a list of non-negative
integers. For example, delay < 2, 4, 6 > indicates the ex-
ecution of the operation takes either 2, 4, or 6 cycles. A
single element list such as < 1 > implies the delay is fixed.
We also assume that each functional unit that executes in-
definite cycle operations has a dedicated output port to
inform the completion of the operations, which we call a
completion signal.

In our scheme, the controller adaptively changes the ex-
ecution timing of the operations depending on the comple-
tion signals of the other operations. However, our schedul-
ing is static in the sense that the execution is adaptive but
the scheduling is precomputed.

The key idea is to represent the adaptive control in the
form of a state transition graph (STG). The result of the
conventional scheduling, Figure 1 (a) for example, may
be regarded as a sequence of states as shown in Figure 2
where each state corresponds to a control step. Sink state
sF is a virtual state, which is introduced for notational
convenience. It stands for “the end of this DFG” and
corresponds to the initial states of the next DFGs.

An instance of adaptive scheduling is expressed by au-
gumenting the transition edges in the STG with the com-
pletion signals: Figure 3 shows an example. It is a variable
scheduling for the same setting as in Figure 1, where ci is
the completion signal for fi.

The initial state s1 corresponds to the first cycle in
the conventional scheduling, which starts execution of f1

and f2. If both f1 and f2 complete in a single cycle,
the next state s2 is reached by following the edge labeled
by c1 c2, where execution of f3 and f4 starts. If f4 also
finishes in a cycle, s9 and then sF are reached. This
path corresponds to the best case scheduling depicted in
Figure 1 (b). If c1 c2 edge and c4 edge are followed from
s1, then it is the worst case (Figure 1 (a)). The more
tricky sequence in Figure 1 (d) is represented by path

s1

c1c2→ s3

c4→ s8 → s9 → sF .

:;

<=

>?

@A

BC

D
E

F

G
H

IJ
J

K

L
M

N O
O

P

Q
R

S

T
U

V

Q
W

SXY

Figure 2: State transition graph of Fig. 1 (a)’s scheduling.

B. Formulation of variable scheduling

Let F be a set of operations in a given program or
a DFG. Let M be a set of the types of the available

���

���

���		

��
 ���

���

������ ��

��

��

�

!"

#$ %& '(

)*
+,

-. /0

12 34
556 789

:;< =
2

=
2

>?@AB

=
2

=
2

=
2

CDE FGHCDE

CIE

=
2

Figure 3: Variable scheduling.

functional units and n(m) be the number of m ∈ M . For
operation f ∈ F , P (f) ⊆ F is the set of the operations on
which f depends, D(f) ⊆ Z+ is the set of the delays (the
number of the possible cycles) for f , and M(f) ∈ M is the
set of the types of the functional units that can execute
f .

Given the above settings, variable scheduling computes
< S, δ, I, m > as defined below:

• S is a set of the states, which must contain the initial
state s0 and the final state sF .

• δ(s, Z) ∈ S, where s ∈ S and Z ⊆ F , is the state
transitioned from s when the set of the operations
that complete their execution by the end of s is ex-
actly euqals to Z.

• I(f) ⊆ S, where f ∈ F , is the set of states at which
the execution of f starts.

• m(s, f) ∈ M(f), where s ∈ S and f ∈ F , is the type
of functional unit that executes f at s.

We define x and A in order to describe constraints posed
on valid state transition graphs.

• x(s, f) ∈ Z+ ∪ {⊥}, where s ∈ S and f ∈ F , indi-
cates that x(s, f)-th cycle of f is executed at s, where
x(s, f) = ⊥ means f is not executed at s.

– x(s, f) = 1 if s ∈ I(f).

– x(δ(s, Z), f) = x(s, f) + 1 if f /∈ Z.

– x(s, f) = ⊥ otherwise.

• A(s) ∈ F , where s ∈ S, is the set of operations which
have completed their execution before s:

– A(s0) = φ.

– A(δ(s, Z)) = A(s) ∪ Z.

A valid state transition graph must satisfy the following
conditions:

1. δ(sF , Z) is undefined for any Z, but δ(s, Z) must be
defined for all the other s ∈ S for some Z. x(sF , f) =
⊥ for all f ∈ F . δ(s, Z) must not be s0 for any
combinations of s and Z.

2. x and A must be consistently defined for s, s1, and
s2 where s = δ(s1, Z1) = δ(s2, Z2). That is:

• If x(s, f) is defined, then x(s1, f) = x(s2, f).

• A(s1) ∪ Z1 = A(s2) ∪ Z2

3. If δ(s, Z) is defined, then x(s, f) ∈ D(f) for all f ∈ Z.

A valid variable scheduling must satisfy the following
constraints:

1. Dependency constraint

∀f ∈ F, ∀s ∈ I(f) : P (f) ⊆ A(s).

All the operations on which f depends must have
been computed before f starts.

2. Resource constraint

Let F (s, m) = {f ∈ F | x(s, f) �= ⊥, m(s, f) = m}.
Then,

∀s ∈ S, ∀m ∈ M : |F (s, m)| ≤ n(m).

The number of the operations which use the unit of
type m at state s is limited.

3. Completion constraint

A(sF) = F .

All the operations must be computed by this state
transition graph.

The scheduling we search for is the one that mini-
mizes the average, or the total number of the cycles. Let
Q<S,δ,I,m> be the set of all the paths (sequences of the
states) from the initial state to the final state for schedul-
ing < S, δ, I, m >. Then, our scheduling problem is for-
mulated as to find < S, δ, I, m > minimizing

∑

q∈Q<S,δ,I,m>

|q|

under the above constraints.

C. Algorithm for variable scheduling

We have developed an algorithm for variable scheduling
which is based on the list-scheduling method [1]. Figure
4 shows its outline.

Function main (lines 01–08) calls recursive function
schedule after initialization. X , Q, C are sets of oper-
ations which are being executed, ready, and completed,
respectively. x[f] and m[f] indicate which cycle and on
which type of functional unit f is being executed (for
f ∈ X).

Function schedule builds a state transition graph for
given X, Q, C, x, m and returns its initial state. Schedul-
ing is computed until both X and Q become empty (line
11). A functional unit to execute each f ∈ Q is searched,
and if it is available, it is scheduled to start execution
at this state (lines 12–19). A new state is created for
updated status, but no two equivalent states will be in-
stanciated so as to avoid state explosion (lines 20–22).
Function schedule is recursively called for every possible
Z with updated status to find the next state δ(s, Z).

01: void main () {
02: X = φ; /* set of executing ops */
04: C = φ; /* set of completed ops */
03: Q = {f | P (f) = φ}; /* set of ready ops */
05: for (f ∈ F) x[f] = ⊥; /* f is executing x[f]-th cycle */
06: for (f ∈ F) m[f] = ⊥; /* unit type to execute f */
07: s0 = schedule(X, C, Q, x, m);
08: }
09:
10: State schedule (X, C, Q, x, m) {
11: if (X==φ && Q== φ) return sF ;
12: for (f ∈ Q) {
13: if (some u ∈ M(f) is available) {
14: x[f] = 0;
15: m[f] = u;
17: X = X ∪ {f};
16: Q = Q − {f};
18: }
19: }
20: for (f ∈ X) x[f]++;
21: if (there exists t with t =< X, Q, C, x, m >) return t;
22: s = new State with s =< X, Q, C, x, m >;
23: for (Z ∈ all possible combinations of ops
24: which can complete execution) {
25: X′ = X − Z;
26: C′ = C ∪ Z;
27: Q′ = Q ∪ {f | P (f) ⊆ C′} − X′ − C′;
28: x′ = x;
29: m′ = m;
30: s′ = schedule(X′, C′, Q′, x′, m′);
31: let δ(s, Z) = s′

32: }
33: return s;
34: }

Figure 4: Algorithm of variable scheduling.

IV. Binding for variable scheduling

A. Difference from conventional binding

In the conventional scheduling, a single functional unit
is assigned to each operation in the binding process. How-
ever, in the case of variable scheduling, an operation may
be executed on different functional units depending on
states.

Figure 5 illustrates such an example. Suppose a fraction
of a state transition graph in Figure 5 (a) is generated by
variable scheduling, and we have two units M1 and M2

that can execute f1, f2, and f3. Figure 5 (b) is an example
of binding for Figure 5 (a). Let f1 and f2 be executed
by M1 and M2, respectively, at state s1. At state s2,
operation f3 must be executed on M1 since M2 is still
executing the second cycle of f1. On the other hand, at
s3, the same operation f3 must be executed on M2 which
is the only available functional unit. Thus, f2 should be
executed on different units depending on the states 1.

similar situation occurs on register binding. Figure 5
(c) is an example of register binding for Figure 5(b). Sup-
pose only four registers R1 through R4 are available. At
state s1, operation f1 reads R1 and R2, and operation f2

reads R3 and R4. At state s2, registers R1 and R2 must
be assigned to the operands of f3, since R3 and R4 are

1If another unit M3 were available, the operation binding could
be made state-independent by assigning M3 to f3.

still read by f2. In contrast, in state s3, the operands of
f3 must be held in registers R3 and R4, instead. Thus,
register binding also depends on the states 2.

Note that in our formulation we only determine an in-
put register for each operation, because this automatically
determines the output registers. Thus, the output regis-
ter for each operation depends on the next state, which is
determined by combination of the present state and the
completion signals.

The circuits synthesized by variable scheduling and
binding are basically the same as those generated by the
conventional methods. The controller of a circuit deliv-
ers control signals to select appropriate operations and
input/output registers for each functional unit and to in-
dicate writes to each registers. The only difference is that
the completion signals are fed into the controller.

B. State splitting

There are bad news about binding for variable schedul-
ing: The number of the states of STG may increase dur-
ing the binding due to the need for state splitting. This is
caused both by operation binding and by register binding.

(1) State splitting by operation binding
Let us consider the STG in Figure 6 (a) which are ob-

tained by adding s4 to that in Figure 5 (a). Operation
f3 is executed on different units M1 and M2 at states s2

and s3, respectively, which incurs a contradiction on re-
convergence state s4. To reconcile this situation, the state
s4 must be split as shown in Figure 6 (b).

(2) State splitting by register binding
The same thing happens during register binding. In

Figure 7 (a), f3 is reading R1 and R2 in state s2 and
R3 and R4 in state s3. In order to avoid conflict on the
reconvergence, state s4 must be split as shown in Figure
7 (b).

Note that some of such state splitting are inevitable,
but others may be avoidable by appropriate operation and
register binding. For example, splitting in Figure 7 would
be avoided if R3 and R4 are used instead of R1 and R2 in
state s2. Thus, it is an important goal to find a binding
that curve the state increase due to state splitting.

C. Formulation of binding

Let V be the set of all the input and output values
(operands) of the operations in F , R be a set of avail-
able registers, and PI (PO) be the set of the input (out-
put) ports of the functional units. For operation type
m ∈ M , U(m) is the set of the functional units of type
m. Let pi(u, k) (po(u, k)) be the k-th input (ouput) port.
Let vi(f, k) (vo(f, k)) be the k-th input (output) operand
value to operation f , and nvi(f) (nvo(f)) be the number
of input (output) operands. Let u(s, f) be the functional

2If there were sufficient number of registers, the register binding
could be made state-independent by using R5 and R6 for input
operands of f3.

��

�� �
�

���

�	

�
�

�
�
���

����
�� ���
�� �� �� ��

��

�� �
�

��

!"#$ %& '(
�)

**+,-. */+ ,-.

01

23

41

56 78 9:

;<=>?@ ?@

(a) result of scheduling (b) operation binding

ABC DEF
GHIJ

KLMNO PPQ

RRS RTS
UV WH

XY

Z[��

�� P� �� ��

��	�
�
�
�
�� �� ��

�� ��

��

�� ���� P� �� ��

(c) register binding

Figure 5: variable binding.

��

��
��
���

�

!"

#$ %& '(

)*)*

�+�
,,-./0 ,1- 234

567

89

:; <=
>?

>?89
@ABC

DE FG

@ABC H
I

JK LM
NNO

PQ

RS

TU VW LM

XY

NZO
[[\]^_ [`\ abc

def ghi def

jk

lm
no

no
jk
pq

rs
pq rs

tutu

vwxyz{|}

(a) before splitting (b) after splitting

Figure 6: State splitting by operation binding.

unit to execute f at s, and r(s, v) be the register to store
value v at s. Then biding is to find u(s, f) and r(s, v)
for s ∈ s, f ∈ F , and v ∈ V which satisfies the following
constraints:

• ∀s ∈ S, ∀f1, f2 ∈ V : u(s, f1) �= u(s, f2).

• ∀s ∈ S, ∀v1, v2 ∈ V : r(s, v1) �= r(s, v2).

• Let s′ = δ(s, Z) and x(s, f) �= ⊥ ∧ x(s′, f) �= ⊥
holds. Then,

– u(s, f) = u(s′, f), and

– r(s, vi(f, k)) = r(s′, vi(f, k)) for 1 ≤ k ≤
nvi(f).

The third constraint is for multicycle operations where the
functional units nor the input registers must not change
during their execution.

There are various cost functions to minimize, among
which we try to curve the number of the interconnections
between the registers and the input/output ports of the
functional units.

minimize |C|, where

C = {(r(s, vi(f, k)), pi(u(s, f), k)),

(po(u(s, f), l), r(s, vo(f, l))) |

1 ≤ k ≤ nvi(f), 1 ≤ l ≤ nvo(f)}

D. Algorithm of binding

Figure 8 shows the outline of the binding algorithm we
have developed so far. As is described in main function
(lines 01–04), operation binding and register binding are

~�� ������
�� ��

�� �
��

�� ����

��

�� ���� ���� �� �
�� ����

¡¢ £¤¥

¦§¨
©� ¦§¨

ª«¬

­® ¯®¡° ±² °

±² ³®­® °

³®

´µ
´µ ¶·¸¹

º¹

(a) before splitting (b) after splitting

Figure 7: State splitting by register binding.

done seperately. This is because we found in our earlier
experiment that simultaneous register binding with oper-
ation biding would cause tremendous state increase due
to state splitting to avoid register conflicts. In function
fu bind, the recursion continues until the final state sF

is reached (line 07). An avaialbe functional unit is as-
signed to each operation f whose execution starts at this
state s (lines 08–09). Then, every possible next state s′

is tested if it has been already visited. If not, recursion
continues on s′ with constraints regarding multicycle op-
eration passed to s′ (lines 12–15). Otherwise, since the
recursion has reached a reconvergence, it checkes for the
consistency. If contradictions are found, then the states
are split (lines 16–23). On the other hand, in register
binding, we use a simpler strategy. We first build for each
value v the list of states where v is alive, and then try
to find a conflict-free mapping from the set of the values
to a set of registers by solving a convering problem by a
greedy method.

01: void main () {
02: fu bind(s0); /* operation binding */
03: reg bind(s0); /* register binding */
04: }
05:
06: void fu bind (State s) {
07: if (s == sF) return;
08: for s (such that s ∈ I(f)) {
09: let u(s, f) be some available unit;
10: }
11: for s′ (such that s′ = δ(s, Z) for some Z) {
12: if (binding of s′ is not yet done) {
13: copy multicycle info from s to s′;
14: fu bind(s′);
15: }
16: else if (binding of s′ is contradictory) {
17: /* state splitting */
18: s′′ = new State;
19: s′′ = s′;
20: overwrite s′′ with multicycle info from s;
21: fu bind(s′′);
22: let δ(s, Z) = s′′

23: }
24: else { ; }
25: }
26: }
27:
28: void reg bind (State s) {
29: build ALIVE(v); /* list of the states where v is alive */
30: solve the covering probem by greedy algorithm;
31: }

Figure 8: Algorithm of binding.

Table I: Result of variable scheduling and binding.

DFG #op #unit fixed (max) fixed (min) variable scheduling & binding
(+, *, M) #st #cy #st #cy #st #cy CPU (sec)

GSM:Auto 740 (2, 2, 1) 847 847 421 518.16 943 496.11 48.375
GSM:RC 225 (2, 2, 1) 247 247 106 155.01 263 143.00 0.180
GSM:TLAR 70 (2, 2, 1) 54 54 33 48.00 54 45.00 0.997
GSM:QC 413 (2, 2, 1) 561 561 243 294.00 561 270.00 0.514
ellip.c 48 (1, 1, 1) 45 45 28 38.94 134 33.42 0.505

(2, 2, 1) 35 35 20 29.76 611 25.58 2.919
matrix3.c 114 (3, 3, 1) 306 306 93 122.84 585 106.00 3.275

the number of cycles: +<1>, ∗<2, 3, 4>, M<1, 4>

V. Experiments

A program to compute variable scheduling and biding
has been implemented based on the algorithm described
so far on Unix (Mac OS X) by Perl (5.8.6). Table I sum-
marizes the results of the experiments. DFGs “ellip.c”
and “matrix3.c” are an eliptic filter and 3×3 matrix mul-
tiplication. “GSM:Auto,” “GSM:RC,” “GSM:TLAR,”
and “GSM:QC” are functions Autocorrelations, Reflec-
tion coefficients, Transformation to Log Area Rations,
and Quantization and coding, respectively, taken from
the GSM benchmark of CHStone [5].

#op is the number of operations in the DFG, #unit
is the list of the numbers of functional units (adders
(+), multipliers (∗), and memory access units (M)). The
numbers of the cycles are < 1 > (fixed) for addition,
< 2, 3, 4 > for multiplication, and < 1, 4 > for mem-
ory accesses. We assume the three possibilities of delays
for multiplication have equal probability (1/3). On the
other hand, we assume a memory access takes one cy-
cle if the address is within the same 256 word row as
in the previous access, but four cycles otherwise. The
columns “fixed (max)” and “fixed (min)” are results (the
number of states, or control steps, and average execution
cycles) by the conventional fixed delay scheduling, where
the maximum and minimum delays, respectively, are as-
sumed for multiplication and memory accesses. The colu-
muns under “variable scheduling & binding” lists the the
number of the states (after binding) and the average ex-
ecution cycles, and the CPU time for the computation
(scheduling and binding).

Across all the benchmarks we tried, fixed (min) gave
better results than fixed (max). Variable scheduling re-
duced the execution cycles over fixed (min) by 13 to 18%
on ellip.c and matrix3.c. However, the increase in the
STG size is prohibitively large. On GSM benchmarks,
where parallelism is not very high, the execution cycles
are reduced by 4 to 8% while the STG sizes are almost
the same as fixed (max).

The CPU time is reasonable for the benchmarks in the
table, but there were cases where the CPU time grew
prohibitively with the STG size especially during binding.

VI. Conclusion

We have presented a concept of variable scheduling, or
precomputed dynamic scheduling, and described its for-
mulation and scheduling/biding algorithms.

There are definitely many things that have to be done
to see if this concept would be practical. The STG size in
terms of the number of states must be reduced through-
out scheduling and biding. The impacts and trade-offs
between the performance and the cost of synthesized cir-
cuits should be evaluated, and many factors should be
taken into account for biding algorithms.

Acknowledgements

Authors would like to express their appreciattion to
Dr. Hiroyuki Kanbara of ASTEM/RI, Prof. Hiroyuki
Tomiyama of Nagoya University, and Mr. Takayuki
Nakatani (formerly with Ritsumeikan University) for their
discussion and valuable comments. We would also like to
thank to Mr. Yoshitaka Iritani and the other members of
Ishiura Lab. of Kwansei Gakuin University.

References

[1] Daniel D. Gajski, Nikil D. Dutt, Allen C-H Wu, and Steve Y-L
Lin: High-Level Synthesis: Introduction to Chip and System
Design, Kluwer Academic Publishers (1992).

[2] Yuki Toda: Dynamic Scheduling for High-Level Synthesis Con-
sidering Indefinite Cycle Operations (in Japanese), Bachelor
Thesis, Department of Informatics, Kwansei Gakuin University
(Mar. 2008).

[3] T. Yoneda, A. Matsumoto, M. Kato, and C. Myers: “High level
synthesis of timed asynchronous circuits,” in Proc. IEEE Inter-
national Symposium on Asynchronous Circuits and Systems,
pp. 178–189 (Mar. 2005).

[4] A. Prihozhy: “Asynchronous scheduling and allocation,” in
Proc. DATE 1998, pp. 963–964 (Feb. 1998).

[5] Y. Hara, H. Tomiyama, S. Honda, H. Takada, and K. Ishii:
“CHStone : A benchmark program suite for practical C-based
high-level synthesis,” in Proc. ISCAS 2008 (May 2008).

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [594.992 841.890]
>> setpagedevice

