Critical thickness for ferroelectricity of BaTiO₃ by first-principles calculations

Ryo Nakao, Keisuke Ishizumi, Isao Takahashi, Hikaru Terauchi, and Yoshinori Hayafuji

Abstract:

The critical thickness for ferroelectricity of a BaTiO₃ film was determined by the first-principles discrete variational-X α molecular orbital method and population analysis. Under the assumption that most ferroelectric perovskite oxides are predominantly ionic, a series of model clusters were developed for a BaTiO₃ particle consisting of a Ba₈Ti₇O₆ cluster constructed on the basis of the crystal structure of BaTiO₃ phase and point charges surrounding the Ba₈Ti₇O₆ cluster. The size of the model cluster was exactly defined by the size of a three-dimensional point-charge array. By comparing the dependence of the net charge of Ba, Ti, and O ions and of the overlap population between Ti 3*d* and O 2*p* orbitals on particle thickness in tetragonal and cubic BaTiO₃ particles, the critical thickness for ferroelectricity was calculated to be about 12 nm for a BaTiO₃ particle with a basal area of 20×20 nm.