Comparative First Principles Study of ATiO₃ Provskite Oxides (A=Ba, Sr, and Pb)

Hironori KAWANISHI, Keisuke ISHIZUMI, Isao TAKAHASHI, Hikaru TERAUCHI, and Yoshinori HAYAFUJI

A comparative study of the structure of BaTiO₃, SrTiO₃, and PbTiO₃ perovskite oxides is performed in order to identify the atomic factors governing the occurrence a ferroelectric or antiferroelectric (rotating-type) phase transition in ATiO₃ perovskite oxides. The variational-X α molecular orbital method is employed to calculate the electronic structures of BaTiO₃, SrTiO₃, and PbTiO₃ in a cubic lattice. The changes in the strength of the A-O (A=Ba, Sr, andPB) and Ti-O covalent interactions are determined as a function of the rotation angle of TiO₆ actahedron and the ferroelectric displacement of Ti and O. A comparison of the calculated results indicates that the rotation of TiO₆ octahedron and the ferroelectric displacement are dominated by the A-O and Ti-O covalent interactions, and that the type of phase transition that occurs (ferroelectric and antiferroelectric) in these perovskite oxides is governed by the delicate balance between the strength of the A-O and Ti-O covalent interactions.

KEYWORDS: perovskite oxides, first-principles, phase transition, electronic structures, covalent interaction, BaTiO₃, SrTiO₃, PbTiO₃