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Abstract

MultiAgent Real-Time A* (MARTA*) is a multi-
agent version of Real-Time A* (RTA*) algo-
rithm where multiple agents concurrently and au-
tonomously search and move to find a solution.
In this paper, we introduce two organizational
strategies based on repulsion and attraction to
MARTA*. Each agent observes the distances
from others and moves as it becomes parted from
or approaches others, in contrast it simply moves
randomly in the original MARTA*. Through
simulation experiments, we demonstrate repul-
sion and attraction are effective in both search
time and solution quality for Maze and 15-puzzle
respectively. However, the opposite combina-
tions of strategy and problem degrade the per-
formance. We finally discuss why the effective-
ness of organizational strategy depends on the
problem from a viewpoint of heuristic depression.
Observed results suggest that there is a fertile
research field which crosses over the traditional
heuristic search and the organizational approach
in multi-agent environment.

Introduction

Heuristic search is a fundamental method to deal with
non-deterministic problem-solving which requires trial-
and-error exploration of alternatives, and a number of
search techniques, such as A* (Nilsson 1971) and It-
erative Deepening A* (IDA*) (Korf 1985) algorithms
to name a few, have been investigated (Pearl 1984).
We can regard A* or IDA* as an off-line search algo-
rithm which computes an entire solution path before
executing the first step in the path. Korf (Korf 1990)
proposed Real-Time A* (RTA*) as an on-line search
algorithm which interleaves planning for a plausible
next move and executing the move, motivated by the
two-player game assumptions of limited search horizon
and commitment to moves in constant time. RTA* do
not find optimal solutions, but it can find semi-optimal
solutions much quicker than traditional off-line search
algorithms.

To improve solution quality of RTA*, Korf suggests
increasing look-ahead horizon in the planning phase,

but it makes the search time grow exponentially as the
depth of look-ahead horizon increases. As an alter-
native way, Knight (Knight 1993) proposed MultiA-
gent Real-Time A* (MARTA*) algorithm to improve
solution quality by increasing the number of agents
engaged in the search. Multiple agents execute RTA*
autonomously and concurrently to attack a single prob-
lem. When an agent chooses a next move at the plan-
ning phase and there are several candidates that look
equally good, the agent chooses one randomly. By in-
creasing the number of agents, we have more chances
to find a better solution because more distinct paths
toward goal states are explored. Since the computa-
tional complexity of MARTA* grows only linearly as
the number of agents increases, Knight shows many
reactive agents which look ahead shallowly are more
effective for problems such as 15-puzzle than a few de-
liberative agents which look ahead deeply.

In the original MARTA* algorithm, however, each
agent chooses its moves just independently and does
not coordinate its moves with others. Multiple agents,
therefore, may search the same path redundantly. In
this paper, we have interest in how agents should be
coordinated to find a better solution more rapidly in
the context of MARTA* and propose two organiza-
tional strategies based on repulsion and attraction to
make agents move in coordinated manners. Each agent
observes the distances from others and moves as it
becomes parted from or approaches others. Through
simulation experiments, we demonstrate repulsion and
attraction show better performance in both search
time and solution quality for Maze and 15-puzzle re-
spectively. However, interestingly the opposite com-
binations of strategy and problem degrade the perfor-
mance. Therefore, we discuss why the effectiveness of
organizational strategy depends on the problem from
a viewpoint of heuristic depression (Ishida 1995). Ob-
served results suggest that there is a fertile research
field which crosses over the traditional heuristic search
and the organizational approach in multi-agent envi-
ronment.



Background

In this section, we give basic terms on graph and
heuristic search for our following discussions.

Basic terms on graphs

A graph is represented as a pair < N,L > where
N(# 0) is a set of nodes and L(C N x N) is a set
of directed links. We here assume (n,n) ¢ L. In a
graph < N,L >, if (n;,n;) € L, then n; is a child
of n; and n; is a parent of n;. A sequence of nodes
(ng,ny,-.-,nm)(m > 1) is called a path from ng to nyy,
ifVE(O <k <m—1): (ng,nes1) € L, and m is called
the length of the path. When a cost ¢ : L — R, where
R is the set of all positive real numbers, is attached
to each link, the cost of path (ng,n1,...,n,,) is given
as r o e(ng, nky1)-

A treeis a graph in which every node except the root
(node) has only one parent. A node with no child in
a tree is called a leaf. The length from the root to a
node n is called the depth to n.

Problem formulation

We can formulate non-deterministic problem solving
with which AT has been dealing by using the state space
representation as follows (Banerji 1980).

A problem is defined as < S,0,s;,G > where S
is a non-empty set of states, O(C S x S) is a set of
operators, each of which maps a state to another, sy (€
S) is the initial state, and G(C S) is a set, of goal states.
< 5,0 > constitutes a state space graph.

A solution is defined as any path (sg, s1, - . ., $p) from
the initial state sy to a goal state sq¢ € G where sg = sy
and s, = sg. When a cost (> 0) is attached to each
operator, the cost of solution is given as that of solution
path. If there exists a solution with cost ¢,,;, and
no other solution with cost less than ¢,,;,, then the
solution is optimal.

Heuristic search

The most basic operation of state space search is gen-
erating a child state by applying an operator to a state.
Especially, if we generate all the child states of a state,
then we say the parent state is expanded. We begin
a graph search by expanding the initial state and re-
peatedly expand generated states until a goal state is
generated.

Although there are various search techniques such as
depth-first or breadth-first characterized by the order
of generated states, these brute force algorithms are
not tractable in fact for problems whose state space is
large because of its combinatorial explosion of compu-
tation. Hence, to improve the search efficiency, we in-
troduce a state evaluation function to prioritize states
to be expanded. In general, the following evaluation
function f(s) is widely used as in A* (Nilsson 1971).

N

f(s) = g(s) + h(s),

where §(s) is the actual cost of reaching state s from
the initial state, and A(s) is the estimated cost of reach-
ing the goal state from state s. A* algorithm has a
property that it always finds an optimal solution if
f(s) never overestimates the actual solution cost. A
major drawback of A* algorithm is that it requires ex-
ponential time and space.

Real-time search

We can regard A* as an off-line search algorithm which
computes an entire solution path before executing the
first step in the path. Korf (Korf 1990) proposed Real-
Time A* (RTA*) algorithm as an on-line search algo-
rithm which interleaves planning for a plausible next
move and executing the move as follows.

Stepl [Initializing] Set s, = sy.
Step2 [Expansion] Expand s, and let C(s,) to
be the set of child states.

Step3 [Termination?] If there exists a goal state
in C(s,), then move to the goal state and quit.

Step4 [Look-ahead search] For all s, € C(s,),
calculate f(sz,sy) = c(82,8y) + f(sy) which is
the estimated cost from s, to the goal state
through s,. f(s,) is calculated from a look-
ahead search of depth d from s, as follows.

fls) = min  [6(sy,50) + h(sw)],

m
swEW (sy,d)

where W (s,,d) is the set of leaves of the look-
ahead search tree and é(s,, s, is the actual cost
from s, to s,, known at the stage.

Step5 [Choice] Choose the best child state s;

with f(sz,s;)(: min,, cco(s,) f(sm,sy)) Ties
are broken randomly.

Step6 [Estimation update] Update h(s,) to be
f(82,8y) (= ming ec(s,)—{s1} f(52,5y)) which is
the estimated cost of the second-best child. If

there is no second-best estimation, let h(s,) =
00

Step7 [Move] Set s, = s),.
Step8 Go to Step2.

Since RTA* does not use g(-) which is the actual
cost from the initial state but only h(-) which is the
estimated cost to the goal state, it may fall into an
infinite loop in which the same state may be visited
infinite times because the evaluation function f (-) does
not reflect the search history. In factl RTA* guarantees
not to fall into an infinite loop as A(-) is updated as
to be increased monotonically in Step 6, and to find a
solution if there exists one at least. In RTA* in which
a single agent is engaged in search, updating h(-) with
the second-best estimated cost hinders itself from vis-
iting the same state again. On the other hand, the
estimated cost is likely to overestimate the actual one.



RTA* do not find optimal solutions, but it can find
solutions much quicker than traditional off-line search
algorithms. Korf suggests a remedy to improve solu-
tion quality in RTA*. It is by increasing look-ahead
horizon d, but there is a drawback that the search
time grows exponentially as d increases. Korf pro-
posed a learning version of RTA* also. In the Learning
RTA* (LRTA*) algorithm, A(s,) is updated with the
best estimation f (s, s,,) for not overestimating the ac-

tual cost. Henceforth, LRTA* guarantees that h(-) will
eventually converges to the optimal value, but it takes
more time than RTA* because it needs to revisit the
same state more times than RTA*.

Multiagent real-time search

As an alternative to improve solution quality in RTA*,
Knight (Knight 1993) proposed MultiAgent Real-Time
A* (MARTA*) algorithm in which multiple agents au-
tonomously and concurrently execute RTA* where the
look-ahead horizon is set to be 1.

MARTA* has two advantageous properties.

Discovering effect The more agents are engaged in
a search, the more distinct paths toward goal states
are discovered, and this leads to improving solution
quality. Even if some agents get stuck, others are
still able to continue to search.

Learning effect The more agents are engaged in a
search, the more actively agents update estimated
costs, and this also leads to improving solution qual-
ity.

While the search time of RTA* grows exponentially
as the look-ahead horizon increases, that of MARTA*
grows only linearly as the number of agents increases.
Moreover, it is also advantageous that MARTA* can
be implemented on parallel processors naturally.

However, there are two flaws in MARTA* concern-
ing updating estimated costs and coordinating agents’
move. When an agent updates h(-) in MARTA*, it

uses RTA* method in which A(-) is updated with the
second-best estimation which may be overestimating

the state. Since multiple agents share h(-) in MARTA*,

overestimated il() hinders other agents from visiting
the state. On the other hand, LRTA* method in which

h(-) is updated with the best estimation does not over-
estimate, but increases the search time because agents
tend to visit the same state again.

In this paper, we devise a hybrid updating method
by combining RTA* and LRTA* methods. Namely,
we use two sorts of estimated costs; common h¢(-)
shared by all the agents and local hy (-) for each agent.
hg(-) is updated by using the LRTA* method not to

overestimate, and &y (-) is locally updated by using the
RTA* method for the agent to refrain from visiting the
same state again. Our new algorithm is obtained from
modifying Step 4 and Step 6 in RTA* as follows.

Step4 [Look-ahead search] For all s, € C(s,),
calculate f(sq,s,) = ¢(sa,8y) + h(s,) which is
the estimation of optimal cost from s, to a goal
state through s,. h(s,) is calculated as follows.

h(sy) = izg(sy) if s, has not been visited,
Y7 | hr(sy) if s, has been visited.

Step6 [Estimation update] Update hg(s,) to be

A

f(52,5y) which is the
best estimation a?d hi(s.) to be f(sz,s;’)(:
ming, ec(s,)—{s;} f (82, 8y)) which is the second-
best estimation. If there is no second-best esti-
mation, let hr(s,) = oco.

This hybrid updating method shows improvement in
solution quality comparing with the original MARTA*
in our preliminary experiment.

The second flaw is concerning coordination of agents’
moves. In the original MARTA*, when an agent meets
multiple child states that look equally good, it selects
one randomly, but this tends to redundant search and
hence degrades the performance. In the next section,
we propose two organizational strategies based on re-
pulsion and attraction to make agents move in a coor-
dinated manner.

Organizational strategies for MARTA*

In the original MARTA*, agents do not move in a co-
ordinated way but just randomly. We expect coordi-
nated moving agents according to the problem would
show better performance than random moving agents.
We, in this paper, propose two organizational strate-
gies based on repulsion and attraction, to coordinate
agents’ move. Repulsion is expected to strengthen the
discovering effect by scattering agents in a wider search
space. In contrast, attraction is expected to strengthen
the learning effect by making agents update estimated
costs in a smaller search space more actively.

Repulsion

Each agent observes the location of others, and moves
in a direction such that it repels others when it has
candidates to move that look equally good.

We here define the term adjacency of an agent which
represents a locational relation of the agent with other
agents. Adjacency J(i, s;) of agent i at state s; is cal-
culated as follows.

6(i,8;) = min czsis'
(.50 = min_ d(si.s))
where A is the set of agents engaged in MARTA*, s;

is the state where agent j is located, J(si,sj) is the
estimated distance from s; to s;. Namely, adjacency
represents the distance to the nearest agent.

We next define repulsive range R as the factor to
decide whether the agent repulses others or not. Re-
pulsive range R(s;) for agent i at state s; is calculated



as follows. A
R(s)) = 22 )
h(sr)

where s; is the initial state. The repulsive range is
largest when the agent is located at the initial state,
then reduces as it is approaching the goal state. Hence,
agents strongly repulse each other at the initial stage of
search, but they are converging on the goal state since
the repulsive range becomes smaller as they approach
the goal state. By changing a, we can change the size
of repulsive range.

Using adjacency ¢ and repulsive range R, we now
modify Step 5 of MARTA* as follows.

Step5 [Choice]  Agent ¢  chooses s
from the candidate set M; = {s,|f(si,s,) =
min,_co(s;)[c(si, 52) + h(s:)]} as follows.

Choose s, as it satisfies
§(z‘, s;) = max,,em 0(i, sy
it Vs, € M : 6(1,8y) < R(s;).
Choose s;  as it satisfies d(i, s;,) > R(s;)
otherwise.

Ties are broken randomly.

In words, if all candidates are within the repulsive
range, choose one with a maximum adjacency. Oth-
erwise, choose one from outside of the repulsive range
randomly.

Attraction

Each agent observes the location of others, and moves
in a direction such as it approaches others when it has
multiple candidates to move that look equally good.

We here define a term isolation A of an agent. Iso-
lation A(i,s;) of agent i at state s; is calculated as
follows.

A(ZNS’L) ]Grzrﬁllé)fz} d(S.“S])-

We here use attraction range G for an agent to decide
whether it approaches other agents or not. When G
is large, agents are scattered, and when small, agents
move crowdedly.

Step 5 of MARTA* is modified as follows.

Step5 [Choice] Agent i Y
from the candidate set M; = {s,|f(si,s,) =
min,_co(s;)[c(si, s:) + h(s.)]} as follows.

selects s

Choose s, as it satisfies
A(i, sy,) = ming, enr A4, 5y)
if Vs, € M : A(z,8,) > G.
Choose s;,  as it satisfies A(i,s;) < G

otherwise.

Ties are broken randomly.

In words, if all the candidates are located outside of
the attraction range, the agent selects one with a mini-
mum isolation. Otherwise, select one in the attraction
range randomly.

It is easy to combine two strategies. When using the
hybrid strategy, agents are located in a doughnut-area
defined by R and G.

Overhead

In the original MARTA*, as each agent moves indepen-
dently, there is no overhead for coordination. In our
organizational approach, we need to spend additional
computational cost to coordinate agents’ moves. For
each agent, when it decides the next state to move,
it refers to the distances to all the other agents for
calculating adjacency and isolation, so the total com-
putational cost for each turn becomes O(A2%), where A
is the number of agents engaged in MARTA*.

Experimental evaluation
Evaluation problems

To evaluate proposed organizational strategies, we
solved Maze and 15-puzzle problems by using
MARTA¥* algorithm.

Maze problem: This is a problem to find a path
from the entrance to the exit in a rectangular grid prob-
lem space with randomly positioned obstacles (Ishida
& Korf 1991). Each agent can move in the horizontal
or vertical direction, but not in the diagonal direction.
We assume an agent takes a single cost for a single
move. We use the 120 x 120 grid and positioned obsta-
cles at a ratio of 40%. The entrance and the exit are
located at (1,1) and (120, 120) respectively. We use
the Euclidean distance to the goal state for the initial
estimated cost of each state and adjacency and isola-
tion of each agent. We execute 100 trials of MARTA*
for 100 randomly generated problems with solutions.

15-puzzle problem: The 15-puzzle consists of a
4 x 4 square frame containing 15 numbered square tiles
and a single blank. The legal operators slide any tile
horizontally or vertically adjacent to the blank into the
blank position. The task is to rearrange the tiles from
some random initial configuration into a particular de-
sired goal configuration. We assume an agent takes a
single cost for a single move of tile. We use the Man-
hattan distance for the initial estimated cost of each
state and adjacency and isolation of each agent. It is
computed by counting, for each tile not in its goal po-
sition, the number of moves along the grid it is away
from its goal position, and summing these values over
all tiles. We execute 100 trials of MARTA* for 9 prob-
lems selected from 100 problems presented in (Korf
1985). 1

'We selected 3 difficult , 3 middle, and 3 easy problems.



Results

We solve Maze and 15-puzzle problems by using
MARTA* simulating agents as if they run concurrently
on parallel processors with a shared memory. We as-
sume the accessing cost to the shared memory is negli-
gibly small. We also do not count computational costs
taken for look-ahead search and organizational strate-
gies and normalize the time taken for a single move as
a unit time. Then, we measure search time and solu-
tion length. The search time is the time taken by the
first agent which reaches a goal state and the solution
length is obtained by deleting cycles from the found
solution path.

For evaluation of repulsion, we set the attraction
range to be infinity (G = o0), then we varied the pa-
rameter . When o = 0, it is equivalent to the original
MARTA*. The averaged results of Maze and 15-puzzle
are shown in Figure 1 and Figure 2 respectively. X-axis
represents the number of agents. The results of the ex-
periments show repulsion is effective for Maze, but not
for 15-puzzle.

For attraction, we set the repulsion range to be 0
(e = 0) and varied the attraction range G. When
G = oo, it is equivalent to the original MARTA*. We
show the averaged results of Maze and 15-puzzle in
Figure 3 and Figure 4 respectively. The results of the
experiments show that attraction is effective for 15-
puzzle, but not for Maze. This result makes a sharp
contrast to that of repulsion.

Discussion

We now explain why the two organizational strate-
gies showed contrasting results by using the concept
of heuristic depression (Ishida 1995). Heuristic depres-
sion is a set of connected states whose estimated cost
are less than or equal to those of the set of immediate
and completely surrounding states. Each agent which
performs MARTA* simply selects a state to move with
the least estimated cost from candidates, so it eas-
ily moves to the bottom state of a heuristic depres-
sion. Once an agent falls into a heuristic depression,
it cannot escape from it without filling the depression,
namely updating the estimated cost iL() of every states
in the depression until they are equal to those of the
surrounding states.

Here we estimate how widely and deeply heuristic
depressions are distributed in Maze and 15-puzzle by
calculating the difference between the initial estimated
cost and the actual cost of states through which agents
move on the way to the goal state as follows.

1. Execute a single agent RTA* and record the states
which the agent visited and their initial estimated
cost.

2. Perform the breadth-first search from the goal state
and calculate the actual costs of the recorded states.

3. Calculate the difference between the actual cost and
the initial estimated cost of the recorded states.

As the size of search space of 15-puzzle is huge, we
used 8-puzzle, which seems to have similar heuristic
depressions, instead of 15-puzzle.

The measurement results of Maze and 8-puzzle are
shown in Figure 5(a) and (b) respectively. The X-
axis represents the difference between the actual cost
and the initial estimated cost (h(s) — h(s)) and the
Y-axis represents the percentage of states. In Maze,
the difference distributes widely from 0 to 500. The
ratio of states with the same value is less than 1%. In
contrast, in 8-puzzle, the difference distributes densely
from 0 to 20. Comparing these results, we can suppose
that deep heuristic depressions are scattered in Maze
more than in 8-puzzle.

In Maze, as heuristic depressions are spread between
the initial state and walls consisting of obstacles, there
are deep depressions spotted in the state space. On the
other hand, in 8-puzzle or 15-puzzle, shallow depres-
sions are distributed ubiquitously. Therefore, attract-
ing agents as a whole easily fall into deep depressions
in Maze. In contrast, as repulsing agents move keeping
some distance with each other, even if some fall into
a depression, the rest can continue to search toward
the goal state. Hence, for Maze, repulsing agents are
effective.

In 15-puzzle, there are many shallow depressions.
In such a state space, it is better for agents to move
densely rather than separately to fill depressions col-
laboratively, namely to update estimated costs in
collaboration with others. For 15-puzzle, attracting
agents are effective.

Conclusion

We proposed and evaluated two organizational strate-
gies based on repulsion and attraction for MARTA*
algorithm. Each agent engaged in the search observes
the location of others and makes a move as it sepa-
rates from or approach others. MARTA* has two ad-
vantages: discovering effect and learning effect, and
they are strengthened by repulsion and attraction re-
spectively. For their evaluations, we used Maze and
15-puzzle which are contrasting from a viewpoint of
heuristic depression. For Maze in which deep depres-
sions are spotted, repulsion showed a good perfor-
mance, and for 15-puzzle in which shallow depressions
are distributed ubiquitously, attraction showed a good
performance. In conclusion, if we use an appropriate
organizational strategy according to the characteristic
of problem, we can get better performance than using
random moving agents.

In this paper, we just showed a relation between
appropriate organizations and heuristic depressions in
Maze and 15-puzzle problems, so application of our
organizational approach to other problems and perfor-
mance evaluation in detail including the overhead of
coordination remain as our future study. However, ob-
served results suggest that there seems to be a fertile
research field which crosses over the traditional heuris-
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tic search and the organizational approach in multi-
agent environment.
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