Multiagent Real-Time-A* with Selection: Introducing Competition
in Cooperative Search

Makoto Yokoo
NTT Communication Science Laboratories
2-2 Hikaridai, Seika-cho, Soraku-gun,
Kyoto 619-02 Japan
e-mail: yokoo@cslab.kecl.ntt jp

Abstract

A new cooperative search algorithm that introduces
a GA-like selection mechanism is developed. In this
algorithm, a state-space search problem is solved con-
currently by multiple agents, each of which executes
the Real-Time-A* algorithm. These agents compete
for existence, 1.e., each agent periodically reproduces
offspring stochastically based on its fitness defined by
the heuristic estimation value of its current state, so
that an agent in a good state tends to reproduce many
offspring while an agent in a bad state tends to be ex-
terminated.

Experimental evaluations show that this algorithm is
very effective for problems that can be divided into
serializable subgoals (e.g., n-puzzles), although the
agents do not have any knowledge about these sub-
goals. In particular, this algorithm can solve the 48-
puzzle, which can not be solved by existing heuris-
tic search algorithms consistently within a reasonable
amount of time unless the knowledge about the sub-
goals is explicitly given.

Introduction

Since virtually all Al problems require some sort of
search, search has been playing an important role in
AT (Korf 1992). When solving a difficult search prob-
lem, a problem solver has to make critical choices for
alternatives. While a correct choice leads to a rela-
tively rapid search, a poor choice results in a very long
search time. Although we can give the problem solver
knowledge enable it to make correct choices (heuris-
tics), we can not guarantee that the problem solver
can always make good decisions.

Cooperative search methods try to reduce this diffi-
culty by introducing multiple problem solvers (agents)
(Clearwater, Huberman, & Hogg 1991; Hogg &
Williams 1993; Knight 1993). Since a problem is solved
concurrently by multiple agents, if at least one agent
can make correct choices, a solution can be obtained
in a reasonable amount of time. These agents co-
operate by exchanging information found during the
search process. Cooperative search methods have been
applied to constraint satisfaction problems (Clear-
water, Huberman, & Hogg 1991; Hogg & Williams

Yasuhiko Kitamura
Faculty of Engineering,
Osaka City University
3-3-138 Sugimoto
Sumiyoshi-ku, Osaka 558 Japan
e-mail: kitamura@info.eng.osaka-cu.ac.jp

Figure 1: Search in 10x10 grid state-space (5 agents)

1993) and state-space search problems (Knight 1993;
Kitamura, Teranishi, & Tatsumi 1996a; 1996b).

One drawback of existing cooperative search meth-
ods is that if agents have to make critical decisions
repeatedly, those agents that made bad decisions early
are unable to contribute to the ongoing search process.
For example, in Figure 1, five agents are in a 10%10
grid state-space with obstacles. A circle represents an
agent, the initial state is the upper-left corner, and the
goal state is the bottom-right corner. Only one agent
(the white circle) has been making correct choices!,
and the other agents are unable to contribute to the
ongoing search process since it will take a very long
time for them to recover from the incorrect choices.

We can assume agents involved in cooperative search
to be limited resources, and hope to make the best use
of them by concentrating search efforts only on promis-
ing states. However, it is very difficult to distinguish
promising states from the other states. If we could
do this correctly, mistakes on critical choices could be

! Agents use the Manhattan distance to the goal state
as a heuristic guide.

avoided, and multiple agents would be unnecessary. By
concentrating the agents on incorrect states, we lose
the benefit of the diversity of decisions.

In this paper, we develop a cooperative search al-
gorithm that introduces competition among agents,
just like the selection mechanism in genetic algorithms
(GAs) (Goldberg 1989). More specifically, each agent
solves a state-space search problem using the Real-
Time-A* algorithm (Knight 1993; Korf 1990). Peri-
odically, each agent reproduces offspring stochastically
based on its fitness defined by the heuristic estimation
value of its current state. In other words, if an agent
is in a state with a good heuristic evaluation value, it
tends to have more offspring in the next generation,
while if an agent is in a state with a bad evaluation
value, it tends to be exterminated. By introducing the
selection mechanism, this algorithm can concentrate
agents on promising states without sacrificing the di-
versity of decisions too much.

Experimental evaluations show that this algorithm
is so effective for n-puzzles that it can solve the 48-
puzzle. A careful examination of the algorithm exe-
cution traces reveals that the algorithm with the se-
lection mechanism utilizes the existence of serializable
subgoals (Korf 1988; Newell & Simon 1972), although
the agents do not have any knowledge about these sub-
goals.

In the following of this paper, we briefly describe
the Real-Time-A* algorithm and the Multiagent Real-
Time-A* algorithm. Then, we show the Multiagent
Real-Time-A* algorithm with selection, and present
experimental results that illustrate the efficiency of this
algorithm. Finally, we give discussions clarifying the
reason for the dramatic speed-up in solving n-puzzles
and the relation with GAs.

Multiagent Real-Time-A* Algorithm
Real-Time-A*

The goal for a state-space search problem (Pearl 1984)
is to find a path from an initial state to a goal state. A
typical example problem is the 8-puzzle (Figure 2). In
this puzzle, there exist eight numbered tiles arranged
on a 3 x 3 board. The goal is to transform the given
initial state to the goal state by sliding tiles onto an
empty square.

State-space search algorithms can be divided into
two groups: off-line and real-time. Off-line algorithms,
such as the A* algorithm (Pearl 1984), compute an en-
tire solution path before executing the first step in the
path. Real-time algorithms, such as the Real-Time-
A*(Korf 1990), perform sufficient computation to de-
termine a plausible next move, execute that move, then
perform further computation to determine the follow-
ing move, and so on, until the goal state is reached.
These algorithms can not guarantee to find the opti-
mal solution, but usually find a suboptimal solution
more rapidly than off-line algorithms.

initial state goal state

d K - HE
1|36 3[al5
> [5]4 6[7]s

Figure 2: Example of a state-space search problem (8-
puzzle)

The Real-Time-A* algorithm can be considered as
a kind of hill climbing search. However, the algorithm
revises a table of heuristic estimates of the distances
from each state to the goal state during the search
process. Therefore, the algorithm is not trapped in a
local minimum and is guaranteed to be complete in the
sense that it will eventually reach the goal, if certain
conditions are satisfied?.

The Real-Time A* repeats the following steps® until
the goal state is reached. Let « be the current state of
the problem solver.

1. Calculate f(2') = h(z’) + k(z,2") for each neighbor
z' of the current state x, where h(z') is the current
heuristic estimate of the distance from z’ to the goal
state, and k(x, ') is the distance between # and #’.

2. Move to a neighbor with the minimum f(z') value.

Ties are broken randomly.

3. Update the value of h(x) to the second-best f(z')

value.

The reason for updating h(z) to the second-best
value 1s that if the problem solver visits & again, the
problem solver will take the best of the alternatives
that were not chosen (the second-best).

It must be noted that there are two alternative in-
terpretations of the Real-Time A* algorithm. One in-
terpretation is that this algorithm is a fast search al-
gorithm that can produce an acceptable solution very
rapidly. Another interpretation is that this algorithm
is on-line, i.e., it represents the situation in which an
agent is interleaving planning and actions in the real-
world. In this paper, we employ the first interpreta-
tion, and try to further improve the efficiency of the
Real-Time A* algorithm. Ofcourse, in some applica-
tions, e.g., the exploration in unknown environment
by multiple robots, we can employ the second inter-
pretation for the Multiagent Real-Time A*. However,

2These conditions are as follows: the problem space is
finite, all edge costs are positive, there exists a path from
every state to the goal state, and the values of initial heuris-
tic estimates are finite.

®This algorithm shows the procedure for the case the
depth of the look-ahead horizon is 1.

the technique we introduce in this paper (the selec-
tion/rearrangement of agents) can not be performed
without requiring additional costs if actions are per-
formed in the real-world.

Multiagent Real-Time A*

In the Multiagent Real-Time-A* algorithm (Knight
1993), multiple agents solve a common state-space
search problem concurrently using the Real-Time-A*.
Each agent has enough knowledge to solve the prob-
lem alone and maintains its history, i.e., the sequence
of the states it has visited. When an agent reaches the
goal state, its history 1s a solution.

Although the agents do not need to communicate to
find a solution, we assume that agents communicate
by sharing a single table of heuristic estimates®. Thus,
one agent can benefit from the experience of another.

Since there are a large number of random tie-breaks
in the Real-Time A* the current states of agents are
dispersed eventually even though the agents share the
same table of heuristic estimates.

Selection in Multiagent Real-time A*

We introduce a GA-like selection mechanism into the
Multiagent Real-Time-A* by the following procedure.
Let us assume the heuristic estimate of agent ¢’s cur-
rent state is represented as h;, and the number of
agents is n. Let us count a single concurrent move
of agents as one step. Once in a certain number of
steps 7', each agent stochastically generates its off-
spring, then the agent is terminated. The total num-
ber of agents in the next generation is fixed to n. Each
offspring inherits the history of its parent, and restarts
the search process from the state where the parent was
terminated. The next generation is created by the fol-
lowing procedure.

for: = 1ton do
if h; = mingeq1 2, 0} hr then
create one offspring of agent ;
else select one agent from {1,2,...,n}
and create one offspring, where the selection
.1 .o . 1
probability of j is YT

eV
end if;
end do;

The selection probability of agent j in each itera-
tion is proportional to 1/h;%. We can assume that
1/h; represents the fitness of agent j. Also, the agent
with the best heuristic estimate always has at least one
offspring®.

*The shared h values are no longer admissible from the
other agents’ perspective, even if the initial & values are
admissible. However, non-admissible heuristic estimates do
not affect the completeness of the algorithm.

®We assume h; is non-zero except the goal state.

This strategy is called elitism in GA studies (Goldberg
1989).

Table 1: Evaluation in grid state-space search (selec-
tion interval=100)

algorithm steps | solution

length
1 agent 6795.1 403.8
10 agents, without selection 1948.7 404.4
10 agents, with selection 1572.3 400.2

For example, assume that there exist only two
agents, and the estimate of agent 1’s current state is
99, and the estimate of agent 2’s current state is 1.
Then, from the above procedure, with a 99% chance,
agent 2 has two offspring, and with a 1% chance, each
agent has one offspring.

Evaluations

In this section, we show the effect of the selection mech-
anism in the Multiagent Real-Time A* using exper-
imental evaluations for typical benchmark problems,
1.e., grid state-space search problems and n-puzzles.

Grid State-Space Search

The first problem is a grid state-space search problem
such as the one in Figure 1. There exists a grid state-
space with randomly positioned obstacles. We allow
motions along the horizontal and vertical dimensions,
but not diagonal motions. The initial state is at the
upper-left corner and the goal state is at the bottom-
right corner. We generate 120 x 120 grid state-spaces,
in which the ratio of obstacles is 40%. An initial value
in the table of heuristic estimates is the Manhattan
distance to the goal state.

We show the average of required steps for 100 tri-
als (10 trials for each of 10 randomly generated prob-
lems) in Table 1. A concurrent single move of agents is
counted as one step. We show the case that only one
agent solves the problem, the case that 10 agents solve
the problem without the selection mechanism, and the
case that 10 agents solve the problem with the selection
mechanism, in which the selection intervalis 100, i.e.; a
selection is performed once in 100 steps. Furthermore,
we show the average length of the obtained solution,
1.e., the length of the path after removing loops. As the
table shows, by introducing the selection mechanism,
we can obtain about a 20% speed-up.

To illustrate the effect of the selection interval
and the number of agents, we show results from the
10 agents’ case, varying the selection interval (Fig-
ure 3(a)), and from the case that the selection interval
is fixed to 100, while the number of agents is changed
(Figure 3(b)).

We can see that if the selection interval is too short
(e.g., 1), the agents are concentrated too much in one
direction, and introducing the selection degrades the

— with selection
3000+ without selection

2500
82000
12 A) _—
B 1500-

1000
500

uir

I

0] T TrTTTTT T TTTT T T T T T T T T T
0 100 200 300 400 500
selection interval

(@

— with selection
7000 without selection
6000

@ 5000

o

B 4000

.5 3000

52000
1000
0 T T T T T T T T T T
0 10 20 30 40
number of agents

(b)

Figure 3: Evaluation in grid state-space search (effect of selection interval/number of agents)

Table 2: Evaluation in 24-puzzle (selection interval=5)

algorithm steps | solution

length
1 agent 66901.7 | 23538.6
5 agents, without selection 14815.9 7648.6
5 agents, with selection 2942.0 1154.7

search performance. Otherwise, the selection mecha-
nism 18 beneficial.

N-puzzle

We show the required steps for the 24-puzzle (the av-
erages of 100 trials with different randomly generated
initial states) in Table 2. An initial value in the table
of heuristic estimates is the sum of Manhattan dis-
tances of wrongly placed tiles. We show the case that
only one agent solves the problem, the case that five
agents solve the problem without the selection mecha-
nism, and the case that five agents solve the problem
with the selection mechanism (in which the selection
interval is 5). To illustrate the effect of the selection
interval, we show results from the five agents’ case,
varying the selection interval (Figure 4).
Furthermore, we show the required steps for the 35-
puzzle and 48-puzzle (the averages of 100 trials with
different randomly generated initial states) in Table 3.
In order to terminate the experiments in a reason-
able amount of time, the total number of steps over
agents is limited to one million (each agent can take at
most 200,000 steps in 5 agents cases), and we interrupt
any trial that exceeds this limit. We show the average
of successfully terminated trials only, and show the ra-
tio of successfully terminated trials within the limit.

— with selection
without selection

IN—

0 5 10 15 20 25 30 35 40 45 50
selection interval

Figure 4: Evaluation in 24-puzzle (effect of selection
interval)

As these results illustrate, the effect of introduc-
ing the selection mechanism is very impressive for n-
puzzles. As far as the authors’ knowledge, there has
been no unidirectional heuristic search algorithm that
can solve the 35- or 48-puzzle consistently, using the
Manhattan distance as the only guide.

To confirm this fact, we are going to show the eval-
uation results of two well-known off-line search algo-
rithms. One is the weighted-A* (WA*) algorithm(Korf
1993), where f(x) = h(z). This algorithm tends to
exhaust available memory very rapidly since it needs
to store all expanded nodes in the open or close lists.
Another one is the recursive best-first search (RBFS)
algorithm(Korf 1993), where f(z) = g(2) + W x h(z).
This algorithm can run in linear space. The parameter
W represents the weight on h. If W = 1, this algo-
rithm finds the optimal solution. Korf (1993) reports

Table 3: Evaluation in 35-/48-puzzle (selection interval=>5)

problem algorithm steps solution | ratio

length
1 agent 420489.4 | 219553.3 | 0.42
3b-puzzle 5 agents, without selection 83346.7 | 46827.4 | 0.43
5 agents, with selection 8685.5 3198.0 1.0
1 agent 393439.0 | 228849.0 | 0.02
48-puzzle 5 agents, without selection 125723.0 14527.0 | 0.01
5 agents, with selection 354527 | 11045.0 1.0

Table 4: Evaluation in 35-/45-puzzle (WA* and RBFS)
problem algorithm steps solution | ratio
length

35-puzzle WA* 110397.3 1968.2 0.6

RBFS 1058833.0 297.7 | 0.06

48-puzzle WA* 189241.9 3151.0 0.1

RBFS — — 0

that required time for finding a solution is optimized
when W is set to 3 in the 15-puzzle. This is because
RBFS tends to explore all possible paths to a given
node, and the number of duplicate nodes explodes as
the search depth increases. Since increasing the weight
on h increases the search depth, small weights can work
better than large weights.

We solved the problem instances used in Table 3
by these algorithms. The results are summarized in
Table 4. We set the memory limit of the WA* to one
million, and the limit of expanded nodes in the RBFS
(W = 3) to 10 million. We show the average steps (the
number of expanding a node) of the solved instances,
and the ratio of successfully solved instances. We can
see neither of these algorithms can solve the 35- or
48-puzzle consistently, although these algorithms can
produce shorter solutions if they can find them.

Discussions

Serializable Subgoals

Why is the selection mechanism very effective for n-
puzzles? A careful examination of the algorithm ex-
ecution traces reveals that this algorithm utilizes the
existence of serializable subgoals (Korf 1988; Newell &
Simon 1972).

A problem has serializable subgoals iff the goal can
be divided into a set of subgoals, and there exists an or-
dering among the subgoals such that the subgoals can
always be solved sequentially without ever violating a
previously solved subgoal in the order (Korf 1988). For
example, if we solve the bottom row of the 15-puzzle
as a subgoal, then we can always solve the rest of the
problem without disturbing the bottom row. Further-
more, if we solve the right column as the next subgoal,

the problem is reduced to the 8-puzzle (Figure 5).

Let us examine how these subgoals are achieved in
the Multiagent Real-Time-A*. Let us call the states in
which the first subgoal (either the bottom row or the
right column is solved) is achieved level I states, and
the states in which the first and second subgoals (both
the bottom row and the right column are solved) are
achieved level 2states, and so on. Figure 6 shows traces
of maximal levels of agent states when five agents are
solving the 24-puzzle with and without the selection
mechanism (the selection interval is 5).

As shown in Figure 6, when using the selection mech-
anism, once a certain subgoal is achieved, this subgoal
is rarely violated by the agents as a whole, and the next
subgoal i1s achieved eventually. On the other hand,
when the selection mechanism is not used, achieved
subgoals are fragile. When using the selection mecha-
nism, the heuristic estimation of the state that achieves
a subgoal 1s relatively good, thus the agent in that state
has a higher probability of making many offspring in
the next generation. As a result, the achieved sub-
goal remains stable, i.e., at least one agent keeps the
subgoal, and the next subgoal is likely to be achieved.

It must be emphasized that agents do not have any
knowledge about the serializable subgoals. The agents
use only the heuristic estimations, where these estima-
tions reflect serializable subgoals very weakly, i.e., the
states that achieve the subgoals are relatively prefer-
able to other states.

To reconfirm the fact that the selection mechanism
can utilize serializable subgoals, we perform evalua-
tions in the Tower of Hanoi problem (Pearl 1984),
which is a typical problem that can be divided into
serializable subgoals. The problem is described as fol-

o 7

11

12 |13 [14 15 12 [13 |24 [15
level 1 level 2

3 2|3

7 6
Q 891011Q8910171

12 (13|14 |15 12 13 [14 |15
level 3 level 4

Figure 5: Serializable subgoals in n-puzzle

0 T T T T 1
0 100 200 300 400 500

step
(a) with selection

; I

0 500 1000 1500 2000 2500
step

(b) without selection

Figure 6: Traces of subgoal achievement in 24-puzzle

lows:

There are m disks D1, Ds, ..., Dy, of graduated
sizes and three pegs 1, 2, and 3. Imitially all the
disks are stacked on peg 1, with D;, the smallest,
on top and D,,, the largest, at the bottom. The
problem is to transfer the stack to peg 3 given that
only one disk can be moved at a time and that no
disk may be placed on top of a smaller one.

This problem can be solved efficiently by decomposing
the problem into subgoals, and the optimal number of
required steps is given by 2 — 1. The obvious serializ-
able subgoals are {(stack D,, on peg 3), (stack D,,_1
on peg 3), ..., (stack Dy on peg 3)}.

An initial value in the table of heuristic estimates is
given as follows.

o For each disk D; of the state, calculate hp, and use
the summation as the heuristic estimate of the state.

o hp, is defined as follows:
— If D; is on peg 1 or peg 2, and there is no disk
under D;: 1

— If D; 1s on peg 1 or peg 2, and there 1s some disk
under D;: 2

— If D; is on peg 3, and the disks under D; are
Diy1,Diqo, ..., Dy (e, identical to the goal
state): 0

— If D; is on peg 3, and the disks under IJ; are not
identical to the goal state: 2

This heuristic estimation is identical to the optimal
number of required steps in the case that there exist
m pegs rather than 3 pegs. Therefore, this heuristic
estimation is admissible.

We show the average of required steps for 50 trials
in which 20 agents solve a 10 disk problem (the selec-
tion interval is 5) in Table 5. We can see a three-fold
speed-up using the selection mechanism. Furthermore,
we show traces of maximal levels of agent states when
10 agents are solving an eight disk problem” in Fig-
ure 7. As the figure shows, we can see that the achieved
subgoals are rarely violated by agents as a whole when
using the selection mechanism.

Does an algorithm that can utilize serializable sub-
goals have any practical advantages? Why aren’t
agents explicitly given knowledge of the serializable
subgoals? For example, the Tower of Hanoi can be
solved optimally without performing any search if the
agents know the subgoals.

As discussed in Korf (1988), finding serializable sub-
goals is very difficult, i.e., proving that a set of subgoals
is serializable is as difficult as proving that a given

"As in the n-puzzle, we call the states in which the first
subgoal (stack Dg on peg 3) is achieved level 1 states, and
S0 on.

0 100 200 300 400 500 600
step
(a) with selection

=

H L]

500 1000 1500 2000 2500 3000
step
(b) without selection

Figure 7: Traces of subgoal achievement in the Tower of Hanoi

Table 5: Evaluation in the Tower of Hanoi (10 disks,
selection interval=>5)

| algorithm | steps |
20 agents, without selection 23796.8
20 agents, with selection 7402.0
problem is solvable from all initial states. Actually,

the authors did not notice the existence of serializable
subgoals in n-puzzles when they first implemented this
algorithm. Therefore, this algorithm has great practi-
cal advantages, since it can utilize serializable subgoals
even if neither agents nor the designer of the algorithm
has knowledge about them.

Relation with Genetic Algorithms

The selection mechanism in this algorithm is inspired
by GA studies (Goldberg 1989). However, the algo-
rithm as a whole is quite different from GAs in the
following points.

e In GAs, an individual or gene represents a candidate
of a solution. On the other hand, in this algorithm,
a solution is a path from the initial state to the goal
state (i.e., the history of transformations of individ-
uals). Therefore, applying operators like mutation
or crossover to the states does not make sense.

Instead of applying operators like mutation or
crossover, a state is changed by a local search pro-
cedure that uses heuristic estimations.

The local search procedure (the Real-Time-A*) can
escape from locally optimal states. Therefore, this
algorithm can perform well with very small popula-
tions compared with GAs.

Conclusions

This paper presented the Multiagent Real-Time-A* al-
gorithm that introduces a GA-like selection mecha-
nism. By introducing the selection mechanism, this
algorithm can concentrate agents on promising states
while maintaining the diversity of decisions. Experi-
mental evaluations have shown that this algorithm is
very effective if the problems have serializable subgoals,
even if neither agents nor the designer of the algorithm
has any knowledge about these subgoals. In particu-
lar, this algorithm can solve the 48-puzzle, which can
not be solved by existing heuristic search algorithms
consistently within a reasonable amount of time unless
the knowledge about the subgoals is explicitly given.

Our future works include confirming the efficiency
of this algorithm in real-life application problems, and
examining the applicability of this framework in other
search domains such as constraint satisfaction prob-
lems.

Acknowledgments

The initial i1dea of this research emerged during the
discussions at a workshop of Multiagent Research com-
munity in Kansai (MARK). The authors wish to thank
members of MARK for their discussions, and Keihanna
Interaction Plaza Inc. for supporting MARK. We also
thank Koichi Matsuda and Nobuyasu Osato for their
support in this work.

References

Clearwater, S. H.; Huberman, B. A.; and Hogg, T.
1991. Cooperative solution of constraint satisfaction
problems. Science 254:1181-1183.

Goldberg, D. 1989. Genetic Algorithms in Search,
Optimization, and Machine Learning. Addison-
Wesley.

Hogg, T., and Williams, C. P. 1993. Solving the really

hard problems with cooperative search. In Proceed-

wngs of the Eleventh National Conference on Artificial
Intelligence, 231-236.

Kitamura, Y.; Teranishi, K.; and Tatsumi, S. 1996a.
An organizational approach to multi-agent real-time
search and its evaluation. Journal of Japanese Society

for Artificial Intelligence 11(3):470-477.

Kitamura, Y.; Teranishi, K.; and Tatsumi, S. 1996b.
Organizational strategies for multiagent real-time
search. In Proceedings of the Second International
Conference on Multi-Agent Systems. MIT Press.

Knight, K. 1993. Are many reactive agents better
than a few deliberative ones? In Proceedings of the
Thirteenth International Joint Conference on Artifi-
cial Intelligence, 432-437.

Korf, R. E. 1988. Optimal path finding algorithms. In
Kanal, L., and Kumar, V., eds., Search in Artificial
Intelligence. Springer-Verlag. 223-267.

Korf, R. E. 1990. Real-time heuristic search. Artificial
Intelligence 42(2-3):189-211.

Korf, R. E. 1992. Search. In Shapiro, S. C., ed., Fncy-
clopedia of Artificial Intelligence. New York: Wiley-
Interscience Publication. 1460-1467. second edition.
Korf, R. E. 1993. Linear-space best-first search. Ar-
tificial Intelligence 62(1):41-78.

Newell, A., and Simon, H. A. 1972. Human Problem
Solving. Prentice-Hall.

Pearl, J. 1984. Heuristics: Intelligent Search Strate-
gies for Computer Problem Solving. Addison-Wesley.

